Orthostatic Intolerance in Adults Reporting Long COVID Symptoms Was Not Associated With Postural Orthostatic Tachycardia Syndrome

Ann Monaghan, Glenn Jennings, Feng Xue, Lisa Byrne, Eoin Duggan, Roman Romero-Ortuno, Ann Monaghan, Glenn Jennings, Feng Xue, Lisa Byrne, Eoin Duggan, Roman Romero-Ortuno

Abstract

In this observational cross-sectional study, we investigated predictors of orthostatic intolerance (OI) in adults reporting long COVID symptoms. Participants underwent a 3-min active stand (AS) with Finapres® NOVA, followed by a 10-min unmedicated 70° head-up tilt test. Eighty-five participants were included (mean age 46 years, range 25-78; 74% women), of which 56 (66%) reported OI during AS (OIAS). OIAS seemed associated with female sex, more fatigue and depressive symptoms, and greater inability to perform activities of daily living (ADL), as well as a higher heart rate (HR) at the lowest systolic blood pressure (SBP) point before the first minute post-stand (mean HRnadir: 88 vs. 75 bpm, P = 0.004). In a regression model also including age, sex, fatigue, depression, ADL inability, and peak HR after the nadir SBP, HRnadir was the only OIAS predictor (OR = 1.09, 95% CI: 1.01-1.18, P = 0.027). Twenty-two (26%) participants had initial (iOH) and 5 (6%) classical (cOHAS) orthostatic hypotension, but neither correlated with OIAS. Seventy-one participants proceeded to tilt, of which 28 (39%) had OI during tilt (OItilt). Of the 53 who had a 10-min tilt, 7 (13%) had an HR increase >30 bpm without cOHtilt (2 to HR > 120 bpm), but six did not report OItilt. In conclusion, OIAS was associated with a higher initial HR on AS, which after 1 min equalised with the non-OIAS group. Despite these initial orthostatic HR differences, POTS was infrequent (2%). ClinicalTrials.gov Identifier: NCT05027724 (retrospectively registered on August 30, 2021).

Keywords: haemodynamics; long COVID; orthostatic intolerance; postural orthostatic tachycardia syndrome; tilt table test.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Monaghan, Jennings, Xue, Byrne, Duggan and Romero-Ortuno.

Figures

FIGURE 1
FIGURE 1
∣ Haemodynamic visualisation of OIAS (n = 56) and non-OIAS (n = 29) groups. (A) Systolic blood pressure (SBP). (B) Diastolic blood pressure (DBP). (C) Heart rate (HR). (D) Tissue saturation index (TSI). bpm, beats per minute; CI, confidence interval.

References

    1. Akbarialiabad H., Taghrir M. H., Abdollahi A., Ghahramani N., Kumar M., Paydar S., et al. (2021). Long COVID, a comprehensive systematic scoping review. Infection 49 1163–1186. 10.1007/s15010-021-01666-x
    1. Amin-Chowdhury Z., Ladhani S. N. (2021). Causation or confounding: why controls are critical for characterizing long COVID. Nat. Med. 27 1129–1130. 10.1038/s41591-021-01402-w
    1. Barizien N., Le Guen M., Russel S., Touche P., Huang F., Vallee A. (2021). Clinical characterization of dysautonomia in long COVID-19 patients. Sci. Rep. 11:14042. 10.1038/s41598-021-93546-5
    1. Becker R. C. (2020). Anticipating the long-term cardiovascular effects of COVID-19. J. Thromb. Thrombolysis 50 512–524. 10.1007/s11239-020-02266-6
    1. Becker R. C. (2021). Autonomic dysfunction in SARS-COV-2 infection acute and long-term implications COVID-19 editor’s page series. J. Thromb. Thrombolysis 52 692–707. 10.1007/s11239-021-02549-6
    1. Blitshteyn S., Whitelaw S. (2021). Postural orthostatic tachycardia syndrome (POTS) and other autonomic disorders after COVID-19 infection: a case series of 20 patients. Immunol. Res. 69 205–211. 10.1007/s12026-021-09185-5
    1. Breeuwsma A. C., Hartog L. C., Kamper A. M., Groenier K. H., Bilo H. J. G., Kleefstra N., et al. (2018). Diagnosing orthostatic hypotension with continuous and interval blood pressure measurement devices. J. Hum. Hypertens. 32 831–837. 10.1038/s41371-018-0091-9
    1. Brignole M., Moya A., De Lange F. J., Deharo J. C., Elliott P. M., Fanciulli A., et al. (2018). 2018 ESC Guidelines for the diagnosis and management of syncope. Eur. Heart J. 39 1883–1948.
    1. Bucciarelli V., Nasi M., Bianco F., Seferovic J., Ivkovic V., Gallina S., et al. (2022). Depression pandemic and cardiovascular risk in the COVID-19 era and long COVID syndrome: gender makes a difference. Trends Cardiovasc. Med. 32 12–17. 10.1016/j.tcm.2021.09.009
    1. Cella M., Chalder T. (2010). Measuring fatigue in clinical and community settings. J. Psychosom. Res. 69 17–22. 10.1016/j.jpsychores.2009.10.007
    1. Claffey P., Perez-Denia L., Rivasi G., Finucane C., Kenny R. A. (2020). Near-infrared spectroscopy in evaluating psychogenic pseudosyncope-a novel diagnostic approach. QJM 113 239–244. 10.1093/qjmed/hcz257
    1. Creamer M., Bell R., Failla S. (2003). Psychometric properties of the impact of event scale - revised. Behav. Res. Ther. 41 1489–1496. 10.1016/j.brat.2003.07.010
    1. Dani M., Dirksen A., Taraborrelli P., Torocastro M., Panagopoulos D., Sutton R., et al. (2021). Autonomic dysfunction in ‘long COVID’: rationale, physiology and management strategies. Clin. Med. 21 e63–e67.
    1. De Vos A., De Keyser J., De Raedt S. (2017). Role of infarct location and pre-existing depression on cardiac baroreceptor sensitivity in subacute ischemic stroke. Acta Neurol. Belg. 117 655–659. 10.1007/s13760-017-0814-7
    1. Del Rio R., Marcus N. J., Inestrosa N. C. (2020). Potential role of autonomic dysfunction in covid-19 morbidity and mortality. Front. Physiol. 11:561749. 10.3389/fphys.2020.561749
    1. Figueroa J. J., Cheshire W. P., Claydon V. E., Norcliffe-Kaufmann L., Peltier A., Singer W., et al. (2020). Autonomic function testing in the COVID-19 pandemic: an American Autonomic Society position statement. Clin. Auton. Res. 30 295–297. 10.1007/s10286-020-00702-4
    1. Finucane C., Van Wijnen V. K., Fan C. W., Soraghan C., Byrne L., Westerhof B. E., et al. (2019). A practical guide to active stand testing and analysis using continuous beat-to-beat non-invasive blood pressure monitoring. Clin. Auton. Res. 29 427–441. 10.1007/s10286-019-00606-y
    1. Freeman R., Wieling W., Axelrod F. B., Benditt D. G., Benarroch E., Biaggioni I., et al. (2011). Consensus statement on the definition of orthostatic hypotension, neurally mediated syncope and the postural tachycardia syndrome. Clin. Auton. Res. 21 69–72.
    1. Goldstein D. S. (2020). The extended autonomic system, dyshomeostasis, and COVID-19. Clin. Auton. Res. 30 299–315. 10.1007/s10286-020-00714-0
    1. Guaraldi P., Barletta G., Baschieri F., Calandra-Buonaura G., Provini F., Cortelli P. (2020). Testing cardiovascular autonomic function in the COVID-19 era: lessons from bologna’s autonomic unit. Clin. Auton. Res. 30 325–330. 10.1007/s10286-020-00710-4
    1. Ishibashi Y., Yoneyama K., Tsuchida T., Akashi Y. J. (2021). Post-COVID-19 postural orthostatic tachycardia syndrome. Intern. Med. 60:2345.
    1. Jennings G., Monaghan A., Xue F., Mockler D., Romero-Ortuño R. (2021). A systematic review of persistent symptoms and residual abnormal functioning following acute COVID-19: ongoing symptomatic phase vs. post-COVID-19 syndrome. J. Clin. Med. 10:5913. 10.3390/jcm10245913
    1. Johansson M., Ståhlberg M., Runold M., Nygren-Bonnier M., Nilsson J., Olshansky B., et al. (2021). Long-haul post–COVID-19 symptoms presenting as a variant of postural orthostatic tachycardia syndrome: the swedish experience. JACC Case Rep. 3 573–580. 10.1016/j.jaccas.2021.01.009
    1. Jordan J., Ricci F., Hoffmann F., Hamrefors V., Fedorowski A. (2020). Orthostatic hypertension: critical appraisal of an overlooked condition. Hypertension 75 1151–1158. 10.1161/HYPERTENSIONAHA.120.14340
    1. Ketch T., Biaggioni I., Robertson R., Robertson D. (2002). Four faces of baroreflex failure: hypertensive crisis, volatile hypertension, orthostatic tachycardia, and malignant vagotonia. Circulation 105 2518–2523.
    1. Keyhanian K., Umeton R. P., Mohit B., Davoudi V., Hajighasemi F., Ghasemi M. (2020). SARS-CoV-2 and nervous system: from pathogenesis to clinical manifestation. J. Neuroimmunol. 350 577436. 10.1016/j.jneuroim.2020.577436
    1. Khosravani H. (2021). The dysfunction is in the details: neurovascular changes in COVID-19. Can. J. Neurol. Sci. 48 1–2. 10.1017/cjn.2020.150
    1. Larsen N. W., Stiles L. E., Miglis M. G. (2021). Preparing for the long-haul: autonomic complications of COVID-19. Auton. Neurosci. 235:102841. 10.1016/j.autneu.2021.102841
    1. Leitzke M., Stefanovic D., Meyer J. J., Schimpf S., Schonknecht P. (2020). Autonomic balance determines the severity of COVID-19 courses. Bioelectron. Med. 6:22. 10.1186/s42234-020-00058-0
    1. Lewinsohn P. M., Seeley J. R., Roberts R. E., Allen N. B. (1997). Center for epidemiologic studies depression scale (CES-D) as a screening instrument for depression among community-residing older adults. Psychol. Aging 12 277–287. 10.1037//0882-7974.12.2.277
    1. Lopez-Leon S., Wegman-Ostrosky T., Perelman C., Sepulveda R., Rebolledo P. A., Cuapio A., et al. (2021). More than 50 long-term effects of COVID-19: a systematic review and meta-analysis. Sci. Rep. 11 16144–16144.
    1. Michelen M., Manoharan L., Elkheir N., Cheng V., Dagens A., Hastie C., et al. (2021). Characterising long COVID: a living systematic review. BMJ Glob. Health 6:e005427. 10.1136/bmjgh-2021-005427
    1. Miglis M. G., Muppidi S. (2017). Is postural tachycardia syndrome in the head or in the heart? And other updates on recent autonomic research. Clin. Auton. Res. 27 145–147. 10.1007/s10286-017-0423-9
    1. Miglis M. G., Prieto T., Shaik R., Muppidi S., Sinn D. I., Jaradeh S. (2020). A case report of postural tachycardia syndrome after COVID-19. Clin. Auton. Res. 30 449–451. 10.1007/s10286-020-00727-9
    1. Munoz-Bermejo L., Adsuar J. C., Mendoza-Munoz M., Barrios-Fernandez S., Garcia-Gordillo M. A., Perez-Gomez J., et al. (2021). Test-retest reliability of five times sit to stand test (FTSST) in adults: a systematic review and meta-analysis. Biology 10:510. 10.3390/biology10060510
    1. Narkiewicz K., Somers V. K. (1998). Chronic orthostatic intolerance: part of a spectrum of dysfunction in orthostatic cardiovascular homeostasis? Circulation 98 2105–2107. 10.1161/01.cir.98.20.2105
    1. Ocher R. A., Padilla E., Hsu J. C., Taub P. R. (2021). Clinical and laboratory improvement in hyperadrenergic postural orthostatic tachycardia syndrome (POTS) after COVID-19 infection. Case Rep. Cardiol. 2021:7809231. 10.1155/2021/7809231
    1. O’Sullivan J. S., Lyne A., Vaughan C. J. (2021). COVID-19-induced postural orthostatic tachycardia syndrome treated with ivabradine. BMJ Case Rep. 14:e243585. 10.1136/bcr-2021-243585
    1. Owens A. P., Low D. A., Critchley H. D., Mathias C. J. (2018). Emotional orienting during interoceptive threat in orthostatic intolerance: dysautonomic contributions to psychological symptomatology in the postural tachycardia syndrome and vasovagal syncope. Auton. Neurosci. 212 42–47. 10.1016/j.autneu.2018.01.004
    1. Paterson I., Ramanathan K., Aurora R., Bewick D., Chow C. M., Clarke B., et al. (2021). Long COVID-19: a primer for cardiovascular health professionals, on behalf of the ccs rapid response team. Can. J. Cardiol. 37 1260–1262. 10.1016/j.cjca.2021.05.011
    1. Peckerman A., Lamanca J. J., Qureishi B., Dahl K. A., Golfetti R., Yamamoto Y., et al. (2003). Baroreceptor reflex and integrative stress responses in chronic fatigue syndrome. Psychosom. Med. 65 889–895. 10.1097/01.psy.0000079408.62277.3d
    1. Piccirillo G., Moscucci F., Fabietti M., Di Iorio C., Mastropietri F., Sabatino T., et al. (2020). Age, gender and drug therapy influences on Tpeak-tend interval and on electrical risk score. J. Electrocardiol. 59 88–92. 10.1016/j.jelectrocard.2020.01.009
    1. Piccirillo G., Moscucci F., Fiorucci C., Di Iorio C., Mastropietri F., Magri D. (2016). Time- and frequency-domain analysis of beat to beat P-wave duration, PR interval and RR interval can predict asystole as form of syncope during head-up tilt. Physiol. Meas. 37 1910–1924. 10.1088/0967-3334/37/11/1910
    1. Qi T., Hu T., Ge Q. Q., Zhou X. N., Li J. M., Jiang C. L., et al. (2021). COVID-19 pandemic related long-term chronic stress on the prevalence of depression and anxiety in the general population. BMC Psychiatry 21:380. 10.1186/s12888-021-03385-x
    1. Radloff L. S. (1977). The CES-D scale: a self report depression scale for research in the general population. Appl. Psychol. Meas. 1 385–401. 10.1177/014662167700100306
    1. Raj S. R., Arnold A. C., Barboi A., Claydon V. E., Limberg J. K., Lucci V. M., et al. (2021). Long-COVID postural tachycardia syndrome: an American Autonomic Society statement. Clin. Auton. Res. 31 365–368. 10.1007/s10286-021-00798-2
    1. Rank A., Tzortzini A., Kling E., Schmid C., Claus R., Loll E., et al. (2021). One year after mild COVID-19: the majority of patients maintain specific immunity, but one in four still suffer from long-term symptoms. J. Clin. Med. 10:3305. 10.3390/jcm10153305
    1. Rogers J. P., Watson C. J., Badenoch J., Cross B., Butler M., Song J., et al. (2021). Neurology and neuropsychiatry of COVID-19: a systematic review and meta-analysis of the early literature reveals frequent CNS manifestations and key emerging narratives. J. Neurol. Neurosurg. Psychiatry 92 932–941. 10.1136/jnnp-2021-326405
    1. Sanchez-Ramirez D. C., Normand K., Zhaoyun Y., Torres-Castro R. (2021). Long-term impact of COVID-19: a systematic review of the literature and meta-analysis. Biomedicines 9:900. 10.3390/biomedicines9080900
    1. Sandler C. X., Wyller V. B. B., Moss-Morris R., Buchwald D., Crawley E., Hautvast J., et al. (2021). Long COVID and post-infective fatigue syndrome: a review. Open Forum Infect. Dis. 8:ofab440. 10.1093/ofid/ofab440
    1. Shah W., Hillman T., Playford E. D., Hishmeh L. (2021). Managing the long term effects of covid-19: summary of NICE, SIGN, and RCGP rapid guideline. BMJ 372:n136. 10.1136/bmj.n136
    1. Shouman K., Vanichkachorn G., Cheshire W. P., Suarez M. D., Shelly S., Lamotte G. J., et al. (2021). Autonomic dysfunction following COVID-19 infection: an early experience. Clin. Auton. Res. 31 385–394. 10.1007/s10286-021-00803-8
    1. Sinn D. I., Muppidi S., Miglis M. G., Jaradeh S. (2021). Autonomic function test during the COVID-19 pandemic: the Stanford experience. Clin. Auton. Res. 31 127–129. 10.1007/s10286-020-00752-8
    1. Townsend L., Moloney D., Finucane C., Mccarthy K., Bergin C., Bannan C., et al. (2021). Fatigue following COVID-19 infection is not associated with autonomic dysfunction. PLoS One 16:e0247280. 10.1371/journal.pone.0247280
    1. van der Velde N., Van Den Meiracker A. H., Stricker B. H., Van Der Cammen T. J. (2007). Measuring orthostatic hypotension with the finometer device: is a blood pressure drop of one heartbeat clinically relevant? Blood Press. Monit. 12 167–171. 10.1097/MBP.0b013e3280b083bd
    1. van Kessel S.a.M, Olde Hartman T. C., Lucassen P., Van Jaarsveld C. H. M. (2021). Post-acute and long-COVID-19 symptoms in patients with mild diseases: a systematic review. Fam. Pract. 39 159–167. 10.1093/fampra/cmab076
    1. Vanichkachorn G., Newcomb R., Cowl C. T., Murad M. H., Breeher L., Miller S., et al. (2021). Post-COVID-19 syndrome (long haul syndrome): description of a multidisciplinary clinic at mayo clinic and characteristics of the initial patient cohort. Mayo Clin. Proc. 96 1782–1791. 10.1016/j.mayocp.2021.04.024
    1. von Elm E., Altman D. G., Egger M., Pocock S. J., Gotzsche P. C., Vandenbroucke J. P., et al. (2007). The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet 370 1453–1457.
    1. Wells R., Malik V., Brooks A. G., Linz D., Elliott A. D., Sanders P., et al. (2020). Cerebral blood flow and cognitive performance in postural tachycardia syndrome: insights from sustained cognitive stress test. J. Am. Heart Assoc. 9:e017861. 10.1161/JAHA.120.017861
    1. Wesseling K. H. (1996). Finger arterial pressure measurement with Finapres. Z. Kardiol. 85(Suppl. 3), 38–44.
    1. WHO (2021). A Clinical Case Definition of Post COVID-19 Condition by a Delphi Consensus: 6 October 2021. Available online at: (accessed 26 October 2021)
    1. Wieling W., Krediet C. T., Van Dijk N., Linzer M., Tschakovsky M. E. (2007). Initial orthostatic hypotension: review of a forgotten condition. Clin. Sci. 112 157–165. 10.1042/CS20060091
    1. Wijkman M., Lanne T., Ostgren C. J., Nystrom F. H. (2016). Diastolic orthostatic hypertension and cardiovascular prognosis in type 2 diabetes: a prospective cohort study. Cardiovasc. Diabetol. 15:83. 10.1186/s12933-016-0399-0
    1. Yan Z., Yang M., Lai C. L. (2021). Long COVID-19 syndrome: a comprehensive review of its effect on various organ systems and recommendation on rehabilitation plans. Biomedicines 9:966. 10.3390/biomedicines9080966
    1. Yong S. J. (2021). Long COVID or post-COVID-19 syndrome: putative pathophysiology, risk factors, and treatments. Infect. Dis. 53 737–754. 10.1080/23744235.2021.1924397
    1. Zarei M., Bose D., Nouri-Vaskeh M., Tajiknia V., Zand R., Ghasemi M. (2021). Long-term side effects and lingering symptoms post COVID-19 recovery. Rev. Med. Virol. Online ahead of print., 10.1002/rmv.2289,

Source: PubMed

3
Subscribe