Feasibility study of using high-throughput drug sensitivity testing to target recurrent glioblastoma stem cells for individualized treatment

Erlend Skaga, Evgeny Kulesskiy, Marit Brynjulvsen, Cecilie J Sandberg, Swapnil Potdar, Iver A Langmoen, Aki Laakso, Emília Gaál-Paavola, Markus Perola, Krister Wennerberg, Einar O Vik-Mo, Erlend Skaga, Evgeny Kulesskiy, Marit Brynjulvsen, Cecilie J Sandberg, Swapnil Potdar, Iver A Langmoen, Aki Laakso, Emília Gaál-Paavola, Markus Perola, Krister Wennerberg, Einar O Vik-Mo

Abstract

Background: Despite the well described heterogeneity in glioblastoma (GBM), treatment is standardized, and clinical trials investigate treatment effects at population level. Genomics-driven oncology for stratified treatments allow clinical decision making in only a small minority of screened patients. Addressing tumor heterogeneity, we aimed to establish a clinical translational protocol in recurrent GBM (recGBM) utilizing autologous glioblastoma stem cell (GSC) cultures and automated high-throughput drug sensitivity and resistance testing (DSRT) for individualized treatment within the time available for clinical application.

Results: From ten patients undergoing surgery for recGBM, we established individual cell cultures and characterized the GSCs by functional assays. 7/10 GSC cultures could be serially expanded. The individual GSCs displayed intertumoral differences in their proliferative capacity, expression of stem cell markers and variation in their in vitro and in vivo morphology. We defined a time frame of 10 weeks from surgery to complete the entire pre-clinical work-up; establish individualized GSC cultures, evaluate drug sensitivity patterns of 525 anticancer drugs, and identify options for individualized treatment. Within the time frame for clinical translation 5/7 cultures reached sufficient cell yield for complete drug screening. The DSRT revealed significant intertumoral heterogeneity to anticancer drugs (p < 0.0001). Using curated reference databases of drug sensitivity in GBM and healthy bone marrow cells, we identified individualized treatment options in all patients. Individualized treatment options could be selected from FDA-approved drugs from a variety of different drug classes in all cases.

Conclusions: In recGBM, GSC cultures could successfully be established in the majority of patients. The individual cultures displayed intertumoral heterogeneity in their in vitro and in vivo behavior. Within a time frame for clinical application, we could perform DSRT in 50% of recGBM patients. The DSRT revealed a remarkable intertumoral heterogeneity in sensitivity to anticancer drugs in recGBM that could allow tailored therapeutic options for functional precision medicine.

Keywords: Drug sensitivity; Drug sensitivity and resistance testing; Glioblastoma; Glioblastoma stem cells; High-throughput drug screening; Individualized medicine; Recurrent glioblastoma.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Course of the disease and time frame for clinical protocol. Glioblastoma patients typically undergo surgery followed by combined radio- and chemotherapy for 6 weeks and thereafter monthly adjuvant chemotherapy. Despite this multimodal treatment the disease almost invariably recurs within 9 months. The time frame for this clinical protocol was defined as 10 weeks following surgery for recurrent GBM, which included expansion of individualized GSC cultures for 6 weeks, automated high-throughput drug screening and data analysis for 1 weeks and scheduling a treatment plan and initiation within 3 weeks
Fig. 2
Fig. 2
Characterization of glioblastoma stem cells from recurrent GBM. ac Pre- and post-operative T1-weighted, contrast-enhanced MRI of three recurrent GBM with the corresponding sphere-, cellular- and xenograft morphology. The individual cultures displayed extensive tumor-to-tumor heterogeneity in their in vitro morphology (e.g. adherent growth in T1608, various differentiation morphology) and in their induced tumor phenotype (e.g. mainly bulk formation In T1534, mainly invasive in T1608). Arrow points to compressed lateral ventricle. Xenografts stained with hematoxylin & eosin. In the recGSC cultures the tumors were harvested after 15 weeks following xenografting. d Total cell yield following serial passages revealed intertumoral variability in their capacity for cell proliferation. Dashed lines represent tumors that could not be serially expanded. e Intertumoral heterogeneity in the expression of stem cell related markers evaluated by flow cytometry. f Upon differentiation all cultures evaluated increased their expression of glial lineage marker GFAP, and all but one (T1513) increased the expression of the neuronal lineage marker β3-tubulin. Scale bar in the light microscopy images: 100 µm. Scale bar in fluorescent images 20 µm. Scale bar in brain sections 1 mm. T tumor, CC corpus callosum
Fig. 3
Fig. 3
Heterogeneity in drug sensitivity in recGSCs. a Dose–response curves of the pan-HER inhibitor canertinib display the variation in drug efficacy in the recGSC cultures. Three responses are classified below the threshold for moderate activity (DSS ≥ 10). b Distribution of the number of drugs displaying a DSS ≥ 10 across the recGSC cultures. c Using a non-parametric one-way ANOVA of ranks, a significant difference was observed in the overall drug sensitivity across the cultures (p < 0.0001). According to the individual culture’s sensitivity to the entire drug collection (n = 525 drugs), they separated into two major clusters as the most and least sensitive. d Clustering of recGSC cultures by correspondence analysis based on all drug responses (n = 525) in all tumors (n = 6). The dots in the scatter plot represents the drugs in the DSRT and the color shading represent a heat map of where the average of the data is located. The scattering of tumors in the plot display both how they differ from the average and how tumors cluster together based on similarities in drug sensitivity patterns. e In the DSRT there were four pan-HER inhibitors that displayed a DSS ≥ 10 in recGSC cultures. f The consistency of T1532 being the most sensitive and T1544 the most resistant displayed an excellent correlation in correlation matrices (Spearman, ρ). g p-values in the correlation matrix of the pan-HER inhibitors. h Selecting for drugs with at least moderate efficacy (DSS ≥ 10) and increased patient-selectivity (sDSSGBM ≥ 5) the distribution of individual classes of drugs with selective efficacy revealed a considerable tumor heterogeneity in drug sensitivity in recGSC cultures
Fig. 4
Fig. 4
Unsupervised hierarchical clustering of drug sensitivity patterns in recGBM. Heat map and unsupervised hierarchical clustering of patient-specific drug responses (sDSSGBM) with Euclidian distance (cultures and drugs). The heat map is filtered by DSS ≥ 10 and sDSS ≥ or ≤ 7 (n = 76 drugs). PN proneural, M mesenchymal, UN unmethylated MGMT promoter, ME methylated MGMT promoter
Fig. 5
Fig. 5
Individual therapeutic options in recGSC cultures. a Waterfall plot of the 15 most (red) and 15 least selective (blue) drug responses in T1534 by sDSSGBM. The plot displays the sensitivity to e.g. statins and estrogen receptor inhibitors, and the resistance to MDM2 inhibitors (SAR405838, AMG-232, Idasanutlin). b Dot plot of sDSS in T1534 using both the GBM (x-axis) and healthy bone marrow (y-axis) reference databases. Classes (color coded) and single drugs with patient-specific activity in T1534 are highlighted. c The corresponding dose–response curves of selected drug responses in T1534. d, e Similar dot plot and selected dose–response curves in T1516. T1516 displayed a remarkable sensitivity to EGFR- and HER-inhibitors, of which several with approval status available for fast translation. f, g Dot plot and selected dose-response curves in T1544. T1544 was among the least sensitive tumors, and displayed an increased sensitivity to MDM2-inhibitors, that currently are evaluated in clinical trials of GBM (NCT03158389)

References

    1. Stupp R, Mason WP, van den Bent MJ, Michael WM, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–996. doi: 10.1056/NEJMoa043330.
    1. Ringel F, Pape H, Sabel M, Krex D, Bock H, Misch M, et al. Clinical benefit from resection of recurrent glioblastomas: results of a multicenter study including 503 patients with recurrent glioblastomas undergoing surgical resection. Neuro-oncology. 2016;18:96–104. doi: 10.1093/neuonc/nov145.
    1. Weller M, van den Bent M, Tonn JC, Stupp R, Preusser M, Cohen-Jonathan-Moyal E, et al. European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas. Lancet Oncol. 2017;18:e315–e329. doi: 10.1016/S1470-2045(17)30194-8.
    1. Nava F, Tramacere I, Fittipaldo A, Bruzzone M, Dimeco F, Fariselli L, et al. Survival effect of first- and second-line treatments for patients with primary glioblastoma: a cohort study from a prospective registry, 1997–2010. Neuro Oncol. 2014;16:719–727. doi: 10.1093/neuonc/not316.
    1. Suchorska B, Weller M, Tabatabai G, Senft C, Hau P, Sabel MC, et al. Complete resection of contrast-enhancing tumor volume is associated with improved survival in recurrent glioblastoma-results from the DIRECTOR trial. Neuro Oncol. 2016;18:549–556. doi: 10.1093/neuonc/nov326.
    1. Vik-Mo E, Sandberg C, Olstorn H, Varghese M, Brandal P, Ramm-Pettersen J, et al. Brain tumor stem cells maintain overall phenotype and tumorigenicity after in vitro culturing in serum-free conditions. Neuro Oncol. 2010;12:1220–1230. doi: 10.1093/neuonc/noq102.
    1. Vik-Mo E, Nyakas M, Mikkelsen B, Moe M, Due-Tønnesen P, Suso E, et al. Therapeutic vaccination against autologous cancer stem cells with mRNA-transfected dendritic cells in patients with glioblastoma. Cancer Immunol Immunother CII. 2013;62:1499–1509. doi: 10.1007/s00262-013-1453-3.
    1. Joo K, Kim J, Jin J, Kim M, Seol H, Muradov J, et al. Patient-specific orthotopic glioblastoma xenograft models recapitulate the histopathology and biology of human glioblastomas in situ. Cell Rep. 2013;3:260–273. doi: 10.1016/j.celrep.2012.12.013.
    1. Lan X, Jörg DJ, Cavalli FM, Richards LM, Nguyen LV, Vanner RJ, et al. Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy. Nature. 2017;549:227–232. doi: 10.1038/nature23666.
    1. Campos B, Olsen L, Urup T, Poulsen H. A comprehensive profile of recurrent glioblastoma. Oncogene. 2016;35:5819–5825. doi: 10.1038/onc.2016.85.
    1. Sottoriva A, Spiteri I, Piccirillo SG, Touloumis A, Collins PV, Marioni JC, et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci. 2013;110:4009–4014. doi: 10.1073/pnas.1219747110.
    1. Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014;344:1396–1401. doi: 10.1126/science.1254257.
    1. Skaga E, Kulesskiy E, Fayzullin A, Sandberg CJ, Potdar S, Kyttälä A, et al. Intertumoral heterogeneity in patient-specific drug sensitivities in treatment-naïve glioblastoma. BMC Cancer. 2019;19:628. doi: 10.1186/s12885-019-5861-4.
    1. Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, Rahme GJ, et al. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell. 2019;178:1–15. doi: 10.1016/j.cell.2019.06.024.
    1. Wang J, Cazzato E, Ladewig E, Frattini V, Rosenbloom DI, Zairis S, et al. Clonal evolution of glioblastoma under therapy. Nat Genet. 2016;48:768–776. doi: 10.1038/ng.3590.
    1. Kim H, Zheng S, Amini SS, Virk SM, Mikkelsen T, Brat DJ, et al. Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution. Genome Res. 2015;25:316–327. doi: 10.1101/gr.180612.114.
    1. Kim J, Lee I-H, Cho H, Park C-K, Jung Y-S, Kim Y, et al. Spatiotemporal evolution of the primary glioblastoma genome. Cancer Cell. 2015;28:318–328. doi: 10.1016/j.ccell.2015.07.013.
    1. Schäfer N, Gielen GH, Rauschenbach L, Kebir S, Till A, Reinartz R, et al. Longitudinal heterogeneity in glioblastoma: moving targets in recurrent versus primary tumors. J Transl Med. 2019;17:96–99. doi: 10.1186/s12967-019-1846-y.
    1. Hunter C, Smith R, Cahill DP, Stephens P, Stevens C, Teague J, et al. A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. Cancer Res. 2006;66:3987–3991. doi: 10.1158/0008-5472.CAN-06-0127.
    1. Johnson BE, Mazor T, Hong C, Barnes M, Aihara K, McLean CY, et al. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science. 2014;343:189–193. doi: 10.1126/science.1239947.
    1. Stupp R, Taillibert S, Kanner A, Read W, Einberg D, Lhermitte B, et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma. JAMA. 2017;318:2306–2311. doi: 10.1001/jama.2017.18718.
    1. Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017;18:1373–1385. doi: 10.1016/S1470-2045(17)30517-X.
    1. Stupp R, Hegi ME, Gorlia T, Erridge SC, Perry J, Hong Y-K, et al. Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2014;15:1100–1108. doi: 10.1016/S1470-2045(14)70379-1.
    1. Karajannis MA, Legault G, Fisher MJ, Milla SS, Cohen KJ, Wisoff JH, et al. Phase II study of sorafenib in children with recurrent or progressive low-grade astrocytomas. Neuro Oncol. 2014;16:1408–1416. doi: 10.1093/neuonc/nou059.
    1. Tourneau C, Delord J-P, Gonçalves A, Gavoille C, Dubot C, Isambert N, et al. Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): a multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial. Lancet Oncol. 2015;16:1324–1334. doi: 10.1016/S1470-2045(15)00188-6.
    1. Marquart J, Chen EY, Prasad V. Estimation of the percentage of US patients with cancer who benefit from genome-driven oncology. JAMA Oncol. 2018;4:1093. doi: 10.1001/jamaoncol.2018.1660.
    1. Pemovska T, Kontro M, Yadav B, Edgren H, Eldfors S, Szwajda A, et al. Individualized systems medicine strategy to tailor treatments for patients with chemorefractory acute myeloid leukemia. Cancer Discov. 2013;3:1416–1429. doi: 10.1158/-13-0350.
    1. Pauli C, Hopkins BD, Prandi D, Shaw R, Fedrizzi T, Sboner A, et al. Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov. 2017;7:462–477. doi: 10.1158/-16-1154.
    1. Oppenlander ME, Wolf AB, Snyder LA, Bina R, Wilson JR, Coons SW, et al. An extent of resection threshold for recurrent glioblastoma and its risk for neurological morbidity. J Neurosurg. 2014;120:846–853. doi: 10.3171/2013.12.JNS13184.
    1. Sughrue ME, Sheean T, Bonney PA, Maurer AJ, Teo C. Aggressive repeat surgery for focally recurrent primary glioblastoma: outcomes and theoretical framework. Neurosurg Focus. 2015;38:E11. doi: 10.3171/2014.12.FOCUS14726.
    1. Yadav B, Pemovska T, Szwajda A, Kulesskiy E, Kontro M, Karjalainen R, et al. Quantitative scoring of differential drug sensitivity for individually optimized anticancer therapies. Scientific Rep. 2014;4:5193. doi: 10.1038/srep05193.
    1. Brodin BA, Wennerberg K, Lidbrink E, Brosjö O, Potdar S, Wilson JN, et al. Drug sensitivity testing on patient-derived sarcoma cells predicts patient response to treatment and identifies c-Sarc inhibitors as active drugs for translocation sarcomas. Br J Cancer. 2019;120:435–443. doi: 10.1038/s41416-018-0359-4.
    1. Ostermann S, Csajka C, Buclin T, Leyvraz S, Lejeune F, Decosterd LA, et al. Plasma and cerebrospinal fluid population pharmacokinetics of temozolomide in malignant glioma patients. Clin Cancer Res. 2004;10:3728–3736. doi: 10.1158/1078-0432.CCR-03-0807.
    1. Skaga E, Skaga I, Grieg Z, Sandberg CJ, Langmoen IA, Vik-Mo EO. The efficacy of a coordinated pharmacological blockade in glioblastoma stem cells with nine repurposed drugs using the CUSP9 strategy. J Cancer Res Clin Oncol. 2019;58:256–13.
    1. Lun X, Wells CJ, Grinshtein N, King JC, Hao X, Dang N-H, et al. Disulfiram when combined with copper enhances the therapeutic effects of temozolomide for the treatment of glioblastoma. Clin Cancer Res. 2016;22:3860–3875. doi: 10.1158/1078-0432.CCR-15-1798.
    1. Stensjøen A, Solheim O, Kvistad K, Håberg AK, Salvesen Ø, Berntsen E. Growth dynamics of untreated glioblastomas in vivo. Neuro Oncol. 2015;17:1402–1411. doi: 10.1093/neuonc/nov029.
    1. Hegi ME, Diserens A-C, Gorlia T, Hamou M-F, de Tribolet N, Weller M, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352:997–1003. doi: 10.1056/NEJMoa043331.
    1. D’Alessandris Q, Biffoni M, Martini M, Runci D, Buccarelli M, Cenci T, et al. The clinical value of patient-derived glioblastoma tumorspheres in predicting treatment response. Neuro Oncol. 2017;19:1097–1108. doi: 10.1093/neuonc/now304.
    1. Lamborn KR, Yung AW, Chang SM, Wen PY, Cloughesy TF, Angelis L, et al. Progression-free survival: an important end point in evaluating therapy for recurrent high-grade gliomas. Neuro Oncol. 2008;10:162–170. doi: 10.1215/15228517-2007-062.
    1. Vredenburgh JJ, Desjardins A, Reardon DA, Friedman HS. Experience with irinotecan for the treatment of malignant glioma. Neuro Oncol. 2009;11:80–91. doi: 10.1215/15228517-2008-075.
    1. Bruce JN, Fine RL, Canoll P, Yun J, Kennedy BC, Rosenfeld SS, et al. Regression of recurrent malignant gliomas with convection-enhanced delivery of topotecan. Neurosurgery. 2011;69:1272–1279. doi: 10.1227/NEU.0b013e3182233e24.
    1. Hamer PC. Small molecule kinase inhibitors in glioblastoma: a systematic review of clinical studies. Neuro Oncol. 2010;12:304–316. doi: 10.1093/neuonc/nop068.
    1. Alshami J, Guiot M-C, Owen S, Kavan P, Gibson N, Solca F, et al. Afatinib, an irreversible ErbB family blocker, with protracted temozolomide in recurrent glioblastoma: a case report. Oncotarget. 2015;6:34030–34037. doi: 10.18632/oncotarget.5297.
    1. Brandes A, Ermani M, Turazzi S, Scelzi E, Berti F, Amistà P, et al. Procarbazine and high-dose tamoxifen as a second-line regimen in recurrent high-grade gliomas: a phase II study. J Clin Oncol. 1999;17:645–650. doi: 10.1200/JCO.1999.17.2.645.
    1. Tang P, Roldan G, Brasher P, Fulton D, Roa W, Murtha A, et al. A phase II study of carboplatin and chronic high-dose tamoxifen in patients with recurrent malignant glioma. J Neurooncol. 2006;78:311–316. doi: 10.1007/s11060-005-9104-y.
    1. Touat M, Idbaih A, Sanson M, Ligon K. Glioblastoma targeted therapy: updated approaches from recent biological insights. Ann Oncol. 2017;28:1457–1472. doi: 10.1093/annonc/mdx106.
    1. Yang P, Zhang W, Wang Y, Peng X, Chen B, Qiu X, et al. IDH mutation and MGMT promoter methylation in glioblastoma: results of a prospective registry. Oncotarget. 2015;6:40896–40906.
    1. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10:459–466. doi: 10.1016/S1470-2045(09)70025-7.
    1. Pitz MW, Desai A, Grossman SA, Blakeley JO. Tissue concentration of systemically administered antineoplastic agents in human brain tumors. J Neurooncol. 2011;104:629–638. doi: 10.1007/s11060-011-0564-y.
    1. Jacus MO, Daryani V, Harstead EK, Patel YT, Throm SL, Stewart CF. Pharmacokinetic properties of anticancer agents for the treatment of central nervous system tumors: update of the literature. Clin Pharmacokinet. 2015;55:297–311. doi: 10.1007/s40262-015-0319-6.
    1. Levy JM, Zahedi S, Griesinger AM, Morin A, Davies KD, Aisner DL, et al. Autophagy inhibition overcomes multiple mechanisms of resistance to BRAF inhibition in brain tumors. eLife. 2017;6:358.
    1. Reungwetwattana T, Nakagawa K, Cho B, Cobo M, Cho E, Bertolini A, et al. CNS response to osimertinib versus standard epidermal growth factor receptor tyrosine kinase inhibitors in patients with untreated EGFR-mutated advanced non-small-cell lung cancer. J Clin Oncol. 2018;36:3290–3297. doi: 10.1200/JCO.2018.78.3118.
    1. Davies MA, Philippe SM, Caroline RM, Jean-Jacques GM, Keith FT, Ana, et al. Dabrafenib plus trametinib in patients with BRAFV600-mutant melanoma brain metastases (COMBI-MB): a multicentre, multicohort, open-label, phase 2 trial. Lancet Oncol. 2017;18:863–873. doi: 10.1016/S1470-2045(17)30429-1.
    1. Bobillo S, Abrisqueta P, Carpio C, Raheja P, Castellví J, Crespo M, et al. Promising activity of selinexor in the treatment of a patient with refractory diffuse large B-cell lymphoma and central nervous system involvement. Haematologica. 2018;103:e92–e93. doi: 10.3324/haematol.2017.181636.
    1. Warren K. Beyond the blood: brain barrier: the importance of central nervous system (CNS) pharmacokinetics for the treatment of CNS tumors, including diffuse intrinsic pontine glioma. Front Oncol. 2018;8:815–911. doi: 10.3389/fonc.2018.00239.
    1. Qazi M, Vora P, Venugopal C, Sidhu S, Moffat J, Swanton C, et al. Intratumoral heterogeneity: pathways to treatment resistance and relapse in human glioblastoma. Ann Oncol. 2017;28:1448–1456. doi: 10.1093/annonc/mdx169.
    1. Vivanco I, Robins IH, Rohle D, Campos C, Grommes C, Nghiemphu P, et al. Differential sensitivity of glioma- versus lung cancer-specific EGFR mutations to EGFR kinase inhibitors. Cancer Discov. 2012;2:458–471. doi: 10.1158/-11-0284.

Source: PubMed

3
Subscribe