Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer

Thomas R Cox, Janine T Erler, Thomas R Cox, Janine T Erler

Abstract

Dynamic remodeling of the extracellular matrix (ECM) is essential for development, wound healing and normal organ homeostasis. Life-threatening pathological conditions arise when ECM remodeling becomes excessive or uncontrolled. In this Perspective, we focus on how ECM remodeling contributes to fibrotic diseases and cancer, which both present challenging obstacles with respect to clinical treatment, to illustrate the importance and complexity of cell-ECM interactions in the pathogenesis of these conditions. Fibrotic diseases, which include pulmonary fibrosis, systemic sclerosis, liver cirrhosis and cardiovascular disease, account for over 45% of deaths in the developed world. ECM remodeling is also crucial for tumor malignancy and metastatic progression, which ultimately cause over 90% of deaths from cancer. Here, we discuss current methodologies and models for understanding and quantifying the impact of environmental cues provided by the ECM on disease progression, and how improving our understanding of ECM remodeling in these pathological conditions is crucial for uncovering novel therapeutic targets and treatment strategies. This can only be achieved through the use of appropriate in vitro and in vivo models to mimic disease, and with technologies that enable accurate monitoring, imaging and quantification of the ECM.

Figures

Fig. 1.
Fig. 1.
Variations in tissue stiffness. The biomechanical properties of a tissue in terms of stiffness (elastic modulus), measured in pascals (Pa), vary markedly between organs and tissues, and are inherently related to tissue function. Mechanically static tissues such as brain or compliant tissues such as lung exhibit low stiffness, whereas tissues exposed to high mechanical loading, such as bone or skeletal muscle, exhibit elastic moduli with a stiffness that is several orders of magnitude greater. Tumorigenesis is typically associated with an increase in matrix and tissue stiffness, as in breast cancer. Adapted, with permission, from Butcher et al. (Butcher et al., 2009).
Fig. 2.
Fig. 2.
Modeling mammary epithelial cells in vitro. Schematic to show modeling of mammary epithelial cells (MECs) in 3D assays in vitro. MECs form organized and polarized acini structures when grown in reconstituted basement membrane in vitro. Milk production can be induced through stimulation with lactogenic hormones. A transformation event results in cell invasion into the lumen. Increased invasive ability correlates with the development of disorganized and branching structures. Increasing matrix stiffness can also induce these events. Adapted, with permission, from Kass et al. (Kass et al., 2007) and Butcher et al. (Butcher et al., 2009).
Fig. 3.
Fig. 3.
Second harmonic generation (SHG) imaging of collagen fibril linearization during mammary gland tumorigenesis. Images are representative of whole, unfixed mammary glands of MMTV-neu mice [which carry an activated neu oncogene driven by a mouse mammary tumor virus (MMTV) promoter] and show that collagen fibril linearity increases with malignant progression, correlating with increased tissue stiffness. Arrowheads indicate linearized collagen fibrils. Image adapted, with permission, from Levental et al. (Levental et al., 2009).
Fig. 4.
Fig. 4.
Imaging the biomechanical properties of the matrix. Breast tumors are typically identified by changes in tissue mechanics, which can be detected physically, through palpitation or via imaging modalities that exploit tumor-associated changes. (A,B) Images of human breast tumor identified by ultrasound echogram (A) and mammary elastography imaging (B). The dashed lines roughly outline the imaged lesion boundary. The elastogram seems to shows a larger apparent lesion width but a similar height, relative to the echogram. This seems to be due to lateral protrusions, which are consistent with a desmoplastic response associated with local invasion that takes advantage of existing ductal and vascular anatomy. (C,D) MRI images of a 1-methyl-1-nitrosourea (MNU)-induced mammary carcinoma in rat. Here, not only do the changes in tumor ECM provide enhanced tissue contrast, but the intrinsic susceptibility of MRI exploits the paramagnetic properties of deoxyhemoglobin in erythrocytes. Deoxyhemoglobin therefore acts as an intrinsic, blood-oxygenation-level-dependent contrast agent, further highlighting the highly vascular nature of tumors. Ultrasound and elastography images were supplied courtesy of Jeff Bamber (The Institute of Cancer Research, UK). MRI images were supplied courtesy of Simon P. Robinson (The Institute of Cancer Research, UK).
Fig. 5.
Fig. 5.
The role of LOX in tumor progression. Schematic to summarize the role of LOX in tumor progression. (1) Increased LOX expression from stromal cells results in increased collagen linearization and tissue stiffness in pre-malignant tissue. These changes increase tumor incidence and tumor burden, and drive malignant progression. (2) LOX secreted by hypoxic tumor cells increases invasion, enabling metastatic dissemination. (3) LOX secreted by hypoxic tumor cells accumulates at distant sites of future metastasis and recruits BMDCs to form the pre-metastatic niche. This greatly enables establishment and growth of metastases. (4) LOX-expressing tumor cells have an enhanced ability to colonize distant organs and form metastases. LOX secreted by both tumor and stromal cells supports metastatic tumor growth. Adapted, with permission, from Erler and Giaccia (Erler and Giaccia, 2008).

References

    1. Abraham D. J., Varga J. (2005). Scleroderma: from cell and molecular mechanisms to disease models. Trends Immunol. 26, 587–595
    1. Aggarwal B. B., Gehlot P. (2009). Inflammation and cancer: how friendly is the relationship for cancer patients? Curr. Opin. Pharmacol. 9, 351–369
    1. Ahn G. O., Brown J. M. (2008). Matrix metalloproteinase-9 is required for tumor vasculogenesis but not for angiogenesis: role of bone marrow-derived myelomonocytic cells. Cancer Cell 13, 193–205
    1. Akhtar R., Sherratt M. J., Watson R. E., Kundu T., Derby B. (2009a). Mapping the micromechanical properties of cryo-sectioned aortic tissue with scanning acoustic microscopy. Mater. Res. Soc. Symp. Proc. 1132E
    1. Akhtar R., Schwarzer N., Sherratt M. J., Watson R. E., Graham H. K., Trafford A. W., Mummery P. M., Derby B. (2009b). Nanoindentation of histological specimens: mapping the elastic properties of soft tissues. J. Mater. Res. 24, 638–646
    1. Alcaraz J., Xu R., Mori H., Nelson C. M., Mroue R., Spencer V. A., Brownfield D., Radisky D. C., Bustamante C., Bissell M. J. (2008). Laminin and biomimetic extracellular elasticity enhance functional differentiation in mammary epithelia. EMBO J. 27, 2829–2838
    1. Arnold S. A., Rivera L. B., Miller A. F., Carbon J. G., Dineen S. P., Xie Y., Castrillon D. H., Sage E. H., Puolakkainen P., Bradshaw A. D., et al. (2010). Lack of host SPARC enhances vascular function and tumor spread in an orthotopic murine model of pancreatic carcinoma. Dis. Model. Mech. 3, 57–72
    1. Avery N. C., Bailey A. J. (2006). The effects of the Maillard reaction on the physical properties and cell interactions of collagen. Pathol. Biol. (Paris) 54, 387–395
    1. Baker E. L., Zaman M. H. (2010). The biomechanical integrin. J. Biomech. 43, 38–44
    1. Barbone P. E., Bamber J. C. (2002). Quantitative elasticity imaging: what can and cannot be inferred from strain images. Phys. Med. Biol. 47, 2147–2164
    1. Barcellos-Hoff M. H., Aggeler J., Ram T. G., Bissell M. J. (1989). Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development 105, 223–235
    1. Barry-Hamilton V., Spangler R., Marshall D., McCauley S., Rodriguez H. M., Oyasu M., Mikels A., Vaysberg M., Ghermazien H., Wai C., et al. (2010). Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat. Med. 16, 1009–1017
    1. Beloussov L. V., Louchinskaia N. N., Stein A. A. (2000). Tension-dependent collective cell movements in the early gastrula ectoderm of Xenopus laevis embryos. Dev. Genes. Evol. 210, 92–104
    1. Ben-Baruch A. (2006). The multifaceted roles of chemokines in malignancy. Cancer Metastasis Rev. 25, 357–371
    1. Bennewith K. L., Huang X., Ham C. M., Graves E. E., Erler J. T., Kambham N., Feazell J., Yang G. P., Koong A., Giaccia A. J. (2009). The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth. Cancer Res. 69, 775–784
    1. Berkenblit A., Matulonis U. A., Kroener J. F., Dezube B. J., Lam G. N., Cuasay L. C., Brunner N., Jones T. R., Silverman M. H., Gold M. A. (2005). A6, a urokinase plasminogen activator (uPA)-derived peptide in patients with advanced gynecologic cancer: a phase I trial. Gynecol. Oncol. 99, 50–57
    1. Bilder D., Li M., Perrimon N. (2000). Cooperative regulation of cell polarity and growth by Drosophila tumor suppressors. Science 289, 113–116
    1. Biondi M. L., Turri O., Leviti S., Seminati R., Cecchini F., Bernini M., Ghilardi G., Guagnellini E. (2000). MMP1 and MMP3 polymorphisms in promoter regions and cancer. Clin. Chem. 46, 2023–2024
    1. Bird J. L., Platt D., Wells T., May S. A., Bayliss M. T. (2000). Exercise-induced changes in proteoglycan metabolism of equine articular cartilage. Equine Vet. J. 32, 161–163
    1. Birk D. E., Bruckner P. (2005). Collagen Suprastructures. Top. Curr. Biol. 247, 185–205
    1. Bissell M. J., Radisky D. (2001). Putting tumours in context. Nat. Rev. Cancer 1, 46–54
    1. Boyd N. F., Dite G. S., Stone J., Gunasekara A., English D. R., McCredie M. R., Giles G. G., Tritchler D., Chiarelli A., Yaffe M. J., et al. (2002). Heritability of mammographic density, a risk factor for breast cancer. N. Engl. J. Med. 347, 886–894
    1. Boyd N. F., Guo H., Martin L. J., Sun L., Stone J., Fishell E., Jong R. A., Hislop G., Chiarelli A., Minkin S., et al. (2007). Mammographic density and the risk and detection of breast cancer. N. Engl. J. Med. 356, 227–236
    1. Brown E., McKee T., diTomaso E., Pluen A., Seed B., Boucher Y., Jain R. K. (2003). Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation. Nat. Med. 9, 796–800
    1. Bunn H. F., Gabbay K. H., Gallop P. M. (1978). The glycosylation of hemoglobin: relevance to diabetes mellitus. Science 200, 21–27
    1. Butcher D. T., Alliston T., Weaver V. M. (2009). A tense situation: forcing tumour progression. Nat. Rev. Cancer 9, 108–122
    1. Cattell M. A., Anderson J. C., Hasleton P. S. (1996). Age-related changes in amounts and concentrations of collagen and elastin in normotensive human thoracic aorta. Clin. Chim. Acta 245, 73–84
    1. Chakraborti S., Mandal M., Das S., Mandal A., Chakraborti T. (2003). Regulation of matrix metalloproteinases: an overview. Mol. Cell. Biochem. 253, 269–285
    1. Chlenski A., Cohn S. L. (2010). Modulation of matrix remodeling by SPARC in neoplastic progression. Semin. Cell Dev. Biol. 21, 55–65
    1. Condeelis J., Pollard J. W. (2006). Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124, 263–266
    1. Condeelis J., Segall J. E. (2003). Intravital imaging of cell movement in tumours. Nat. Rev. Cancer 3, 921–930
    1. Cortese B., Gigli G., Riehle M. (2009). Mechanical gradient cues for guided cell motility and control of cell behavior on uniform substrates. Adv. Funct. Mater. 19, 2961–2968
    1. Coussens L. M., Werb Z. (2001). Inflammatory cells and cancer: think different! J. Exp. Med. 193, F23–F26
    1. Coussens L. M., Fingleton B., Matrisian L. M. (2002). Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295, 2387–2392
    1. Csiszar K. (2001). Lysyl oxidases: a novel multifunctional amine oxidase family. Prog. Nucleic Acid Res. Mol. Biol. 70, 1–32
    1. Denton C. P., Abraham D. J. (2001). Transforming growth factor-beta and connective tissue growth factor: key cytokines in scleroderma pathogenesis. Curr. Opin. Rheumatol. 13, 505–511
    1. Derda R., Laromaine A., Mammoto A., Tang S. K., Mammoto T., Ingber D. E., Whitesides G. M. (2009). Paper-supported 3D cell culture for tissue-based bioassays. Proc. Natl. Acad. Sci. USA 106, 18457–18462
    1. Desgrosellier J. S., Cheresh D. A. (2010). Integrins in cancer: biological implications and therapeutic opportunities. Nat. Rev. Cancer 10, 9–22
    1. Discher D. E., Mooney D. J., Zandstra P. W. (2009). Growth factors, matrices, and forces combine and control stem cells. Science 324, 1673–1677
    1. Dror Y., Freedman M. H. (1999). Shwachman-Diamond syndrome: an inherited preleukemic bone marrow failure disorder with aberrant hematopoietic progenitors and faulty marrow microenvironment. Blood 94, 3048–3054
    1. Dufour A., Sampson N. S., Zucker S., Cao J. (2008). Role of the hemopexin domain of matrix metalloproteinases in cell migration. J. Cell. Physiol. 217, 643–651
    1. Durier S., Fassot C., Laurent S., Boutouyrie P., Couetil J. P., Fine E., Lacolley P., Dzau V. J., Pratt R. E. (2003). Physiological genomics of human arteries: quantitative relationship between gene expression and arterial stiffness. Circulation 108, 1845–1851
    1. Ebihara T., Venkatesan N., Tanaka R., Ludwig M. S. (2000). Changes in extracellular matrix and tissue viscoelasticity in bleomycin-induced lung fibrosis. Temporal aspects. Am. J. Respir. Crit. Care Med. 162, 1569–1576
    1. Egeblad M., Werb Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2, 161–174
    1. Engel J., Taylor W., Paulsson M., Sage H., Hogan B. (1987). Calcium binding domains and calcium-induced conformational transition of SPARC/BM-40/osteonectin, an extracellular glycoprotein expressed in mineralized and nonmineralized tissues. Biochemistry 26, 6958–6965
    1. Engler A. J., Sen S., Sweeney H. L., Discher D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689
    1. Erler J. T., Giaccia A. J. (2008). The cellular microenvironment and metastases. In Abeloff’s Clinical Oncology, Fourth Edition (eds Abeloff M. D., Armitage J. O., Niederhuber J. E., Kastan M. B., McKenna W. G.), pp. 33–47 Philadelphia: Elsevier Publications Ltd; (Churchill Livingstone).
    1. Erler J. T., Linding R. (2010). Network-based drugs and biomarkers. J. Pathol. 220, 290–296
    1. Erler J. T., Weaver V. M. (2009). Three-dimensional context regulation of metastasis. Clin. Exp. Metastasis 26, 35–49
    1. Erler J. T., Bennewith K. L., Nicolau M., Dornhofer N., Kong C., Le Q. T., Chi J. T., Jeffrey S. S., Giaccia A. J. (2006). Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440, 1222–1226
    1. Erler J. T., Bennewith K. L., Cox T. R., Lang G., Bird D., Koong A., Le Q. T., Giaccia A. J. (2009). Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15, 35–44
    1. Frank R. N. (1991). On the pathogenesis of diabetic retinopathy. A 1990 update. Ophthalmology 98, 586–593
    1. Friedman S. L. (2004). Mechanisms of disease: mechanisms of hepatic fibrosis and therapeutic implications. Nat. Clin. Pract. Gastroenterol. Hepatol. 1, 98–105
    1. Friedman S. L., Maher J. J., Bissell D. M. (2000). Mechanisms and therapy of hepatic fibrosis: report of the AASLD single topic basic research conference. Hepatology 32, 1403–1408
    1. Funk S. E., Sage E. H. (1991). The Ca2(+)-binding glycoprotein SPARC modulates cell cycle progression in bovine aortic endothelial cells. Proc. Natl. Acad. Sci. USA 88, 2648–2652
    1. Giampieri S., Manning C., Hooper S., Jones L., Hill C. S., Sahai E. (2009). Localized and reversible TGFbeta signalling switches breast cancer cells from cohesive to single cell motility. Nat. Cell Biol. 11, 1287–1296
    1. Giancotti F. G., Ruoslahti E. (1999). Integrin signaling. Science 285, 1028–1032
    1. Glasheen B. M., Kabra A. T., Page-McCaw A. (2009). Distinct functions for the catalytic and hemopexin domains of a Drosophila matrix metalloproteinase. Proc. Natl. Acad. Sci. USA 106, 2659–2664
    1. Glenn J. V., Stitt A. W. (2009). The role of advanced glycation end products in retinal ageing and disease. Biochim. Biophys. Acta 1790, 1109–1116
    1. Goffin J. R., Anderson I. C., Supko J. G., Eder J. P., Jr, Shapiro G. I., Lynch T. J., Shipp M., Johnson B. E., Skarin A. T. (2005). Phase I trial of the matrix metalloproteinase inhibitor marimastat combined with carboplatin and paclitaxel in patients with advanced non-small cell lung cancer. Clin. Cancer Res. 11, 3417–3424
    1. Graham H. K., Hodson N. W., Hoyland J. A., Millward-Sadler S. J., Garrod D., Scothern A., Griffiths C. E., Watson R. E., Cox T. R., Erler J. T., et al. (2010). Tissue section AFM: In situ ultrastructural imaging of native biomolecules. Matrix Biol. 29, 254–260
    1. Gueta R., Barlam D., Shneck R. Z., Rousso I. (2006). Measurement of the mechanical properties of isolated tectorial membrane using atomic force microscopy. Proc. Natl. Acad. Sci. USA 103, 14790–14795
    1. Hadjipanayi E., Mudera V., Brown R. A. (2009). Guiding cell migration in 3D: a collagen matrix with graded directional stiffness. Cell Motil. Cytoskeleton 66, 121–128
    1. Hasegawa M., Fujimoto M., Takehara K., Sato S. (2005). Pathogenesis of systemic sclerosis: altered B cell function is the key linking systemic autoimmunity and tissue fibrosis. J. Dermatol. Sci. 39, 1–7
    1. Hicke B. J., Stephens A. W., Gould T., Chang Y. F., Lynott C. K., Heil J., Borkowski S., Hilger C. S., Cook G., Warren S., et al. (2006). Tumor targeting by an aptamer. J. Nucl. Med. 47, 668–678
    1. Hornstra I. K., Birge S., Starcher B., Bailey A. J., Mecham R. P., Shapiro S. D. (2003). Lysyl oxidase is required for vascular and diaphragmatic development in mice. J. Biol. Chem. 278, 14387–14393
    1. Hynes R. O. (2009). The extracellular matrix: not just pretty fibrils. Science 326, 1216–1219
    1. Ingman W. V., Wyckoff J., Gouon-Evans V., Condeelis J., Pollard J. W. (2006). Macrophages promote collagen fibrillogenesis around terminal end buds of the developing mammary gland. Dev. Dyn. 235, 3222–3229
    1. Iredale J. P. (2007). Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ. J. Clin. Invest. 117, 539–548
    1. Issa R., Zhou X., Constandinou C. M., Fallowfield J., Millward-Sadler H., Gaca M. D., Sands E., Suliman I., Trim N., Knorr A., et al. (2004). Spontaneous recovery from micronodular cirrhosis: evidence for incomplete resolution associated with matrix cross-linking. Gastroenterology 126, 1795–1808
    1. Jacobs T. W., Byrne C., Colditz G., Connolly J. L., Schnitt S. J. (1999). Radial scars in benign breast-biopsy specimens and the risk of breast cancer. N. Engl. J. Med. 340, 430–436
    1. Jiang T., Olson E. S., Nguyen Q. T., Roy M., Jennings P. A., Tsien R. Y. (2004). Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc. Natl. Acad. Sci. USA 101, 17867–17872
    1. Jodele S., Blavier L., Yoon J. M., DeClerck Y. A. (2006). Modifying the soil to affect the seed: role of stromal-derived matrix metalloproteinases in cancer progression. Cancer Metastasis Rev. 25, 35–43
    1. Kagan H. M. (1994). Lysyl oxidase: mechanism, regulation and relationship to liver fibrosis. Pathol. Res. Pract. 190, 910–919
    1. Kagan H. M. (2000). Intra- and extracellular enzymes of collagen biosynthesis as biological and chemical targets in the control of fibrosis. Acta Trop. 77, 147–152
    1. Kagan H. M., Li W. (2003). Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell. J. Cell. Biochem. 88, 660–672
    1. Kaler S. G., Gallo L. K., Proud V. K., Percy A. K., Mark Y., Segal N. A., Goldstein D. S., Holmes C. S., Gahl W. A. (1994). Occipital horn syndrome and a mild Menkes phenotype associated with splice site mutations at the MNK locus. Nat. Genet. 8, 195–202
    1. Kaplan R. N., Riba R. D., Zacharoulis S., Bramley A. H., Vincent L., Costa C., MacDonald D. D., Jin D. K., Shido K., Kerns S. A., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827
    1. Kass L., Erler J. T., Dembo M., Weaver V. M. (2007). Mammary epithelial cell: influence of extracellular matrix composition and organization during development and tumorigenesis. Int. J. Biochem. Cell Biol. 39, 1987–1994
    1. Kaviratne M., Hesse M., Leusink M., Cheever A. W., Davies S. J., McKerrow J. H., Wakefield L. M., Letterio J. J., Wynn T. A. (2004). IL-13 activates a mechanism of tissue fibrosis that is completely TGF-beta independent. J. Immunol. 173, 4020–4029
    1. Keeley E. C., Mehrad B., Strieter R. M. (2009). Fibrocytes: Bringing new insights into mechanisms of inflammation and fibrosis. Int. J. Biochem. Cell Biol. 42, 535–542
    1. Kessenbrock K., Plaks V., Werb Z. (2010). Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141, 52–67
    1. Kirschmann D. A., Seftor E. A., Fong S. F., Nieva D. R., Sullivan C. M., Edwards E. M., Sommer P., Csiszar K., Hendrix M. J. (2002). A molecular role for lysyl oxidase in breast cancer invasion. Cancer Res. 62, 4478–4483
    1. Klotzsch E., Smith M. L., Kubow K. E., Muntwyler S., Little W. C., Beyeler F., Gourdon D., Nelson B. J., Vogel V. (2009). Fibronectin forms the most extensible biological fibers displaying switchable force-exposed cryptic binding sites. Proc. Natl. Acad. Sci. USA 106, 18267–18272
    1. Korosoglou G., Weiss R. G., Kedziorek D. A., Walczak P., Gilson W. D., Schar M., Sosnovik D. E., Kraitchman D. L., Boston R. C., Bulte J. W., et al. (2008). Noninvasive detection of macrophage-rich atherosclerotic plaque in hyperlipidemic rabbits using “positive contrast” magnetic resonance imaging. J. Am. Coll. Cardiol. 52, 483–491
    1. Kumar S., Weaver V. M. (2009). Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev. 28, 113–127
    1. Lane T. F., Sage E. H. (1994). The biology of SPARC, a protein that modulates cell-matrix interactions. FASEB J. 8, 163–173
    1. Le Q. T., Kong C., Lavori P. W., O’Byrne K., Erler J. T., Huang X., Chen Y., Cao H., Tibshirani R., Denko N., et al. (2007). Expression and prognostic significance of a panel of tissue hypoxia markers in head-and-neck squamous cell carcinomas. Int. J. Radiat. Oncol. Biol. Phys. 69, 167–175
    1. Le Q. T., Harris J., Magliocco A. M., Kong C. S., Diaz R., Shin B., Cao H., Trotti A., Erler J. T., Chung C. H., et al. (2009). Validation of lysyl oxidase as a prognostic marker for metastasis and survival in head and neck squamous cell carcinoma: radiation therapy oncology group trial 90–03. J. Clin. Oncol. 27, 4281–4286
    1. Levental K. R., Yu H., Kass L., Lakins J. N., Egeblad M., Erler J. T., Fong S. F., Csiszar K., Giaccia A., Weninger W., et al. (2009). Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906
    1. Li R. K., Li G., Mickle D. A., Weisel R. D., Merante F., Luss H., Rao V., Christakis G. T., Williams W. G. (1997). Overexpression of transforming growth factor-beta1 and insulin-like growth factor-I in patients with idiopathic hypertrophic cardiomyopathy. Circulation 96, 874–881
    1. Littlepage L. E., Sternlicht M. D., Rougier N., Phillips J., Gallo E., Yu Y., Williams K., Brenot A., Gordon J. I., Werb Z. (2010). Matrix metalloproteinases contribute distinct roles in neuroendocrine prostate carcinogenesis, metastasis, and angiogenesis progression. Cancer Res. 70, 2224–2234
    1. Lo C. M., Wang H. B., Dembo M., Wang Y. L. (2000). Cell movement is guided by the rigidity of the substrate. Biophys. J. 79, 144–152
    1. Low A. F., Tearney G. J., Bouma B. E., Jang I. K. (2006). Technology Insight: optical coherence tomography-current status and future development. Nat. Clin. Pract. Cardiovasc. Med. 3, 154–162
    1. Mack G. S., Marshall A. (2010). Lost in migration. Nat. Biotechnol. 28, 214–229
    1. Maki J. M., Rasanen J., Tikkanen H., Sormunen R., Makikallio K., Kivirikko K. I., Soininen R. (2002). Inactivation of the lysyl oxidase gene Lox leads to aortic aneurysms, cardiovascular dysfunction, and perinatal death in mice. Circulation 106, 2503–2509
    1. Markiewicz M., Smith E. A., Rubinchik S., Dong J. Y., Trojanowska M., LeRoy E. C. (2004). The 72-kilodalton IE-1 protein of human cytomegalovirus (HCMV) is a potent inducer of connective tissue growth factor (CTGF) in human dermal fibroblasts. Clin. Exp. Rheumatol. 22, S31–S34
    1. Massague J. (2008). TGFbeta in Cancer. Cell 134, 215–230
    1. McAteer M. A., Schneider J. E., Ali Z. A., Warrick N., Bursill C. A., von zur Muhlen C., Greaves D. R., Neubauer S., Channon K. M., Choudhury R. P. (2008). Magnetic resonance imaging of endothelial adhesion molecules in mouse atherosclerosis using dual-targeted microparticles of iron oxide. Arterioscler. Thromb. Vasc. Biol. 28, 77–83
    1. McPhail L. D., Robinson S. P. (2010). Intrinsic susceptibility MR imaging of chemically induced rat mammary tumors: relationship to histologic assessment of hypoxia and fibrosis. Radiology 254, 110–118
    1. Michigami T., Shimizu N., Williams P. J., Niewolna M., Dallas S. L., Mundy G. R., Yoneda T. (2000). Cell-cell contact between marrow stromal cells and myeloma cells via VCAM-1 and alpha(4)beta(1)-integrin enhances production of osteoclast-stimulating activity. Blood 96, 1953–1960
    1. Miserus R. J., Herias M. V., Prinzen L., Lobbes M. B., Van Suylen R. J., Dirksen A., Hackeng T. M., Heemskerk J. W., van Engelshoven J. M., Daemen M. J., et al. (2009). Molecular MRI of early thrombus formation using a bimodal alpha2-antiplasmin-based contrast agent. JACC Cardiovasc. Imaging 2, 987–996
    1. Mitsiades N., Yu W. H., Poulaki V., Tsokos M., Stamenkovic I. (2001). Matrix metalloproteinase-7-mediated cleavage of Fas ligand protects tumor cells from chemotherapeutic drug cytotoxicity. Cancer Res. 61, 577–581
    1. Moore B. B., Kolodsick J. E., Thannickal V. J., Cooke K., Moore T. A., Hogaboam C., Wilke C. A., Toews G. B. (2005). CCR2-mediated recruitment of fibrocytes to the alveolar space after fibrotic injury. Am. J. Pathol. 166, 675–684
    1. Morikawa K., Walker S. M., Nakajima M., Pathak S., Jessup J. M., Fidler I. J. (1988). Influence of organ environment on the growth, selection, and metastasis of human colon carcinoma cells in nude mice. Cancer Res. 48, 6863–6871
    1. Mosher D. F., Schad P. E. (1979). Cross-linking of fibronectin to collagen by blood coagulation Factor XIIIa. J. Clin. Invest. 64, 781–787
    1. Mosher D. F., Schad P. E., Kleinman H. K. (1979). Inhibition of blood coagulation factor XIIIa-mediated cross-linking between fibronectin and collagen by polyamines. J. Supramol. Struct. 11, 227–235
    1. Mossman B. T., Churg A. (1998). Mechanisms in the pathogenesis of asbestosis and silicosis. Am. J. Respir. Crit. Care Med. 157, 1666–1680
    1. Mott J. D., Werb Z. (2004). Regulation of matrix biology by matrix metalloproteinases. Curr. Opin. Cell Biol. 16, 558–564
    1. Moustakas A., Heldin C. H. (2005). Non-Smad TGF-beta signals. J. Cell Sci. 118, 3573–3584
    1. Murawaki Y., Kusakabe Y., Hirayama C. (1991). Serum lysyl oxidase activity in chronic liver disease in comparison with serum levels of prolyl hydroxylase and laminin. Hepatology 14, 1167–1173
    1. Murphy-Ullrich J. E., Lane T. F., Pallero M. A., Sage E. H. (1995). SPARC mediates focal adhesion disassembly in endothelial cells through a follistatin-like region and the Ca(2+)-binding EF-hand. J. Cell. Biochem. 57, 341–350
    1. Muthuswamy S. K., Li D., Lelievre S., Bissell M. J., Brugge J. S. (2001). ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini. Nat. Cell Biol. 3, 785–792
    1. Oldberg A., Kalamajski S., Salnikov A. V., Stuhr L., Morgelin M., Reed R. K., Heldin N. E., Rubin K. (2007). Collagen-binding proteoglycan fibromodulin can determine stroma matrix structure and fluid balance in experimental carcinoma. Proc. Natl. Acad. Sci. USA 104, 13966–13971
    1. Pampaloni F., Reynaud E. G., Stelzer E. H. (2007). The third dimension bridges the gap between cell culture and live tissue. Nat. Rev. Mol. Cell Biol. 8, 839–845
    1. Pardo A., Selman M. (2006). Matrix metalloproteases in aberrant fibrotic tissue remodeling. Proc. Am. Thorac. Soc. 3, 383–388
    1. Paszek M. J., Weaver V. M. (2004). The tension mounts: mechanics meets morphogenesis and malignancy. J. Mammary Gland Biol. Neoplasia 9, 325–342
    1. Paszek M. J., Zahir N., Johnson K. R., Lakins J. N., Rozenberg G. I., Gefen A., Reinhart-King C. A., Margulies S. S., Dembo M., Boettiger D., et al. (2005). Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241–254
    1. Pawson T., Linding R. (2008). Network medicine. FEBS Lett. 582, 1266–1270
    1. Payne S. L., Fogelgren B., Hess A. R., Seftor E. A., Wiley E. L., Fong S. F., Csiszar K., Hendrix M. J., Kirschmann D. A. (2005). Lysyl oxidase regulates breast cancer cell migration and adhesion through a hydrogen peroxide-mediated mechanism. Cancer Res. 65, 11429–11436
    1. Payne S. L., Hendrix M. J., Kirschmann D. A. (2007). Paradoxical roles for lysyl oxidases in cancer-a prospect. J. Cell. Biochem. 101, 1338–1354
    1. Perentes J. Y., McKee T. D., Ley C. D., Mathiew H., Dawson M., Padera T. P., Munn L. L., Jain R. K., Boucher Y. (2009). In vivo imaging of extracellular matrix remodeling by tumor-associated fibroblasts. Nat. Methods 6, 143–145
    1. Phillips R. J., Burdick M. D., Hong K., Lutz M. A., Murray L. A., Xue Y. Y., Belperio J. A., Keane M. P., Strieter R. M. (2004). Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. J. Clin. Invest. 114, 438–446
    1. Provenzano P. P., Eliceiri K. W., Campbell J. M., Inman D. R., White J. G., Keely P. J. (2006). Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 4, 38.
    1. Provenzano P. P., Inman D. R., Eliceiri K. W., Knittel J. G., Yan L., Rueden C. T., White J. G., Keely P. J. (2008). Collagen density promotes mammary tumor initiation and progression. BMC Med. 6, 11.
    1. Radermacher K. A., Beghein N., Boutry S., Laurent S., Vander Elst L., Muller R. N., Jordan B. F., Gallez B. (2009). In vivo detection of inflammation using pegylated iron oxide particles targeted at E-selectin: a multimodal approach using MR imaging and EPR spectroscopy. Invest. Radiol. 44, 398–404
    1. Radisky D., Hagios C., Bissell M. J. (2001). Tumors are unique organs defined by abnormal signaling and context. Semin. Cancer Biol. 11, 87–95
    1. Reardon D. A., Zalutsky M. R., Akabani G., Coleman R. E., Friedman A. H., Herndon J. E., 2nd, McLendon R. E., Pegram C. N., Quinn J. A., Rich J. N., et al. (2008). A pilot study: 131I-antitenascin monoclonal antibody 81c6 to deliver a 44-Gy resection cavity boost. Neuro. Oncol. 10, 182–189
    1. Reynolds P. R., Larkman D. J., Haskard D. O., Hajnal J. V., Kennea N. L., George A. J., Edwards A. D. (2006). Detection of vascular expression of E-selectin in vivo with MR imaging. Radiology 241, 469–476
    1. Rittweger J., Winwood K., Seynnes O., de Boer M., Wilks D., Lea R., Rennie M., Narici M. (2006). Bone loss from the human distal tibia epiphysis during 24 days of unilateral lower limb suspension. J. Physiol. 577, 331–337
    1. Rittweger J., Simunic B., Bilancio G., De Santo N. G., Cirillo M., Biolo G., Pisot R., Eiken O., Mekjavic I. B., Narici M. (2009). Bone loss in the lower leg during 35 days of bed rest is predominantly from the cortical compartment. Bone 44, 612–618
    1. Rocco P. R., Negri E. M., Kurtz P. M., Vasconcellos F. P., Silva G. H., Capelozzi V. L., Romero P. V., Zin W. A. (2001). Lung tissue mechanics and extracellular matrix remodeling in acute lung injury. Am. J. Respir. Crit. Care Med. 164, 1067–1071
    1. Rosenbaum E., Zahurak M., Sinibaldi V., Carducci M. A., Pili R., Laufer M., DeWeese T. L., Eisenberger M. A. (2005). Marimastat in the treatment of patients with biochemically relapsed prostate cancer: a prospective randomized, double-blind, phase I/II trial. Clin. Cancer Res. 11, 4437–4443
    1. Rosenkranz S., Flesch M., Amann K., Haeuseler C., Kilter H., Seeland U., Schluter K. D., Bohm M. (2002). Alterations of beta-adrenergic signaling and cardiac hypertrophy in transgenic mice overexpressing TGF-beta(1). Am. J. Physiol. Heart Circ. Physiol. 283, H1253–H1262
    1. Roskelley C. D., Srebrow A., Bissell M. J. (1995). A hierarchy of ECM-mediated signalling regulates tissue-specific gene expression. Curr. Opin. Cell Biol. 7, 736–747
    1. Royce P. M., Camakaris J., Danks D. M. (1980). Reduced lysyl oxidase activity in skin fibroblasts from patients with Menkes’ syndrome. Biochem. J. 192, 579–586
    1. Roycik M. D., Fang X., Sang Q. X. (2009). A fresh prospect of extracellular matrix hydrolytic enzymes and their substrates. Curr. Pharm. Des. 15, 1295–1308
    1. Sage H., Johnson C., Bornstein P. (1984). Characterization of a novel serum albumin-binding glycoprotein secreted by endothelial cells in culture. J. Biol. Chem. 259, 3993–4007
    1. Sage H., Vernon R. B., Funk S. E., Everitt E. A., Angello J. (1989). SPARC, a secreted protein associated with cellular proliferation, inhibits cell spreading in vitro and exhibits Ca+2-dependent binding to the extracellular matrix. J. Cell Biol. 109, 341–356
    1. Sakamoto T., Seiki M. (2009). Cytoplasmic tail of MT1-MMP regulates macrophage motility independently from its protease activity. Genes Cells 14, 617–626
    1. Sasaki N., Fukatsu R., Tsuzuki K., Hayashi Y., Yoshida T., Fujii N., Koike T., Wakayama I., Yanagihara R., Garruto R., et al. (1998). Advanced glycation end products in Alzheimer’s disease and other neurodegenerative diseases. Am. J. Pathol. 153, 1149–1155
    1. Scherer R. L., McIntyre J. O., Matrisian L. M. (2008a). Imaging matrix metalloproteinases in cancer. Cancer Metastasis Rev. 27, 679–690
    1. Scherer R. L., VanSaun M. N., McIntyre J. O., Matrisian L. M. (2008b). Optical imaging of matrix metalloproteinase-7 activity in vivo using a proteolytic nanobeacon. Mol. Imaging 7, 118–131
    1. Schmeichel K. L., Bissell M. J. (2003). Modeling tissue-specific signaling and organ function in three dimensions. J. Cell Sci. 116, 2377–2388
    1. Schnider S. L., Kohn R. R. (1980). Glucosylation of human collagen in aging and diabetes mellitus. J. Clin. Invest. 66, 1179–1181
    1. Schwartz M. A., Baron V. (1999). Interactions between mitogenic stimuli, or, a thousand and one connections. Curr. Opin. Cell Biol. 11, 197–202
    1. Sethi T., Rintoul R. C., Moore S. M., MacKinnon A. C., Salter D., Choo C., Chilvers E. R., Dransfield I., Donnelly S. C., Strieter R., et al. (1999). Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nat. Med. 5, 662–668
    1. Sherratt M. J., Baldock C., Haston J. L., Holmes D. F., Jones C. J., Shuttleworth C. A., Wess T. J., Kielty C. M. (2003). Fibrillin microfibrils are stiff reinforcing fibres in compliant tissues. J. Mol. Biol. 332, 183–193
    1. Sivakumar P., Gupta S., Sarkar S., Sen S. (2008). Upregulation of lysyl oxidase and MMPs during cardiac remodeling in human dilated cardiomyopathy. Mol. Cell. Biochem. 307, 159–167
    1. Sivan S. S., Wachtel E., Tsitron E., Sakkee N., van der Ham F., Degroot J., Roberts S., Maroudas A. (2008). Collagen turnover in normal and degenerate human intervertebral discs as determined by the racemization of aspartic acid. J. Biol. Chem. 283, 8796–8801
    1. Spuentrup E., Buecker A., Katoh M., Wiethoff A. J., Parsons E. C., Jr, Botnar R. M., Weisskoff R. M., Graham P. B., Manning W. J., Gunther R. W. (2005). Molecular magnetic resonance imaging of coronary thrombosis and pulmonary emboli with a novel fibrin-targeted contrast agent. Circulation 111, 1377–1382
    1. Sternlicht M. D., Werb Z. (2001). How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol. 17, 463–516
    1. Sternlicht M. D., Lochter A., Sympson C. J., Huey B., Rougier J. P., Gray J. W., Pinkel D., Bissell M. J., Werb Z. (1999). The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 98, 137–146
    1. Stover D. G., Bierie B., Moses H. L. (2007). A delicate balance: TGF-beta and the tumor microenvironment. J. Cell. Biochem. 101, 851–861
    1. Stracke C. P., Katoh M., Wiethoff A. J., Parsons E. C., Spangenberg P., Spuntrup E. (2007). Molecular MRI of cerebral venous sinus thrombosis using a new fibrin-specific MR contrast agent. Stroke 38, 1476–1481
    1. Strieter R. M., Gomperts B. N., Keane M. P. (2007). The role of CXC chemokines in pulmonary fibrosis. J. Clin. Invest. 117, 549–556
    1. Strongin A. Y. (2006). Mislocalization and unconventional functions of cellular MMPs in cancer. Cancer Metastasis Rev. 25, 87–98
    1. Suki B., Bates J. H. (2008). Extracellular matrix mechanics in lung parenchymal diseases. Respir. Physiol. Neurobiol. 163, 33–43
    1. Termine J. D., Belcourt A. B., Conn K. M., Kleinman H. K. (1981). Mineral and collagen-binding proteins of fetal calf bone. J. Biol. Chem. 256, 10403–10408
    1. Tsien R. Y. (2005). Building and breeding molecules to spy on cells and tumors. FEBS Lett. 579, 927–932
    1. Varga J., Abraham D. (2007). Systemic sclerosis: a prototypic multisystem fibrotic disorder. J. Clin. Invest. 117, 557–567
    1. Vaupel P., Kallinowski F., Okunieff P. (1989). Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 49, 6449–6465
    1. Verzijl N., DeGroot J., Thorpe S. R., Bank R. A., Shaw J. N., Lyons T. J., Bijlsma J. W., Lafeber F. P., Baynes J. W., TeKoppele J. M. (2000). Effect of collagen turnover on the accumulation of advanced glycation end products. J. Biol. Chem. 275, 39027–39031
    1. Vitek M. P., Bhattacharya K., Glendening J. M., Stopa E., Vlassara H., Bucala R., Manogue K., Cerami A. (1994). Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc. Natl. Acad. Sci. USA 91, 4766–4770
    1. Watanabe T., Barker T. A., Berk B. C. (2005). Angiotensin II and the endothelium: diverse signals and effects. Hypertension 45, 163–169
    1. Weaver V. M., Fischer A. H., Peterson O. W., Bissell M. J. (1996). The importance of the microenvironment in breast cancer progression: recapitulation of mammary tumorigenesis using a unique human mammary epithelial cell model and a three-dimensional culture assay. Biochem. Cell Biol. 74, 833–851
    1. Weaver V. M., Petersen O. W., Wang F., Larabell C. A., Briand P., Damsky C., Bissell M. J. (1997). Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J. Cell Biol. 137, 231–245
    1. Wells R. G., Discher D. E. (2008). Matrix elasticity, cytoskeletal tension, and TGF-beta: the insoluble and soluble meet. Sci. Signal. 1, pe13
    1. Wiberg C., Klatt A. R., Wagener R., Paulsson M., Bateman J. F., Heinegard D., Morgelin M. (2003). Complexes of matrilin-1 and biglycan or decorin connect collagen VI microfibrils to both collagen II and aggrecan. J. Biol. Chem. 278, 37698–37704
    1. Wipff P. J., Rifkin D. B., Meister J. J., Hinz B. (2007). Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J. Cell Biol. 179, 1311–1323
    1. Wolf K., Alexander S., Schacht V., Coussens L. M., von Andrian U. H., van Rheenen J., Deryugina E., Friedl P. (2009). Collagen-based cell migration models in vitro and in vivo. Semin. Cell Dev. Biol. 20, 931–941
    1. Wolfe J. N. (1976a). Risk for breast cancer development determined by mammographic parenchymal pattern. Cancer 37, 2486–2492
    1. Wolfe J. N. (1976b). Breast patterns as an index of risk for developing breast cancer. AJR Am. J. Roentgenol. 126, 1130–1137
    1. Wong J. Y., Velasco A., Rajagopalan P., Pham Q. (2003). Directed movement of vascular smooth muscle cells on gradient-compliant hydrogels. Langmuir 19, 1908–1913
    1. Wynn T. A. (2007). Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J. Clin. Invest. 117, 524–529
    1. Yamada K. M., Cukierman E. (2007). Modeling tissue morphogenesis and cancer in 3D. Cell 130, 601–610
    1. Yu H., Mouw J. K., Weaver V. M. (2010). Forcing form and function: biomechanical regulation of tumor evolution. Trends Cell Biol. 21, 47–56

Source: PubMed

3
Subscribe