The Noise Exposure Structured Interview (NESI): An Instrument for the Comprehensive Estimation of Lifetime Noise Exposure

Hannah Guest, Rebecca S Dewey, Christopher J Plack, Samuel Couth, Garreth Prendergast, Warren Bakay, Deborah A Hall, Hannah Guest, Rebecca S Dewey, Christopher J Plack, Samuel Couth, Garreth Prendergast, Warren Bakay, Deborah A Hall

Abstract

Lifetime noise exposure is generally quantified by self-report. The accuracy of retrospective self-report is limited by respondent recall but is also bound to be influenced by reporting procedures. Such procedures are of variable quality in current measures of lifetime noise exposure, and off-the-shelf instruments are not readily available. The Noise Exposure Structured Interview (NESI) represents an attempt to draw together some of the stronger elements of existing procedures and to provide solutions to their outstanding limitations. Reporting is not restricted to prespecified exposure activities and instead encompasses all activities that the respondent has experienced as noisy (defined based on sound level estimated from vocal effort). Changing exposure habits over time are reported by dividing the lifespan into discrete periods in which exposure habits were approximately stable, with life milestones used to aid recall. Exposure duration, sound level, and use of hearing protection are reported for each life period separately. Simple-to-follow methods are provided for the estimation of free-field sound level, the sound level emitted by personal listening devices, and the attenuation provided by hearing protective equipment. An energy-based means of combining the resulting data is supplied, along with a primarily energy-based method for incorporating firearm-noise exposure. Finally, the NESI acknowledges the need of some users to tailor the procedures; this flexibility is afforded, and reasonable modifications are described. Competency needs of new users are addressed through detailed interview instructions (including troubleshooting tips) and a demonstration video. Limited evaluation data are available, and future efforts at evaluation are proposed.

Keywords: noise-induced hearing loss; occupational noise; public health; risk; self-report.

Figures

Figure 1.
Figure 1.
Performance of existing self-report measures of noise exposure.
Figure 2.
Figure 2.
Noise exposure data from a cohort of 62 preliminary NESI respondents, obtained using a beta version of the NESI (Dewey et al., 2018). Nineteen were classed as music-industry workers, the remaining 43 were not. Music-industry workers encompassed professionals, teachers, trainees, and experienced amateurs in the following: musical performance, sound engineering, music production engineering, and disk jockeying. Density plots illustrate the distributions of (a) recreational noise exposure, (b) occupational noise exposure, and (c) total lifetime noise exposure. Note that, to allow plotting on a logarithmic scale, NESI scores of 0 have been adjusted to 0.001.

References

    1. Beach E. F., Gilliver M., Williams W. (2013) The NOISE (Non-Occupational Incidents, Situations and Events) database: A new research tool. Annals of Leisure Research 16(2): 149–159. doi:10.1080/11745398.2013.793157.
    1. Beach E. F., Williams W., Gilliver M. (2012) The objective-subjective assessment of noise: Young adults can estimate loudness of events and lifestyle noise. International Journal of Audiology 51(6): 444–449. doi:10.3109/14992027.2012.658971.
    1. Berger, E. H., Neitzel, R., & Kladden, C. (2015). Noise Navigator™ sound level database with over 1700 measurement values (version 1.8). Retrieved from .
    1. Bramhall N. F., Konrad-Martin D., McMillan G. P., Griest S. E. (2017) Auditory brainstem response altered in humans with noise exposure despite normal outer hair cell function. Ear and Hearing 38(1): e1–e12. doi:10.1097/AUD.0000000000000370.
    1. British Standards Institution. (2017). BS EN 60065:2014+A11:2017: Audio, video and similar electronic apparatus—Safety requirements. .
    1. Browning G. G. (1986) Clinical otology and audiology, 1st ed Oxford, England: Butterworth-Heinemann.
    1. Carter L., Black D., Bundy A., Williams W. (2016) An estimation of the whole-of-life noise exposure of adolescent and young adult Australians with hearing impairment. Journal of the American Academy of Audiology 27(9): 750–763. doi:10.3766/jaaa.15100.
    1. Dalton D. S., Cruickshanks K. J., Wiley T. L., Klein B. E., Klein R., Tweed T. S. (2001) Association of leisure-time noise exposure and hearing loss. Audiology 40(1): 1–9. doi:10.3109/00206090109073095.
    1. Davis A. C. (1995) Hearing in adults, London, England: Whurr.
    1. Davis R. I., Qiu W., Heyer N. J., Zhao Y., Yang M. Q., Li N., Yao D. (2012) The use of the kurtosis metric in the evaluation of occupational hearing loss in workers in China: Implications for hearing risk assessment. Noise & Health 14(61): 330, doi:10.4103/1463-1741.104903.
    1. Davis R. R., Clavier O. (2017) Impulsive noise: A brief review. Hearing Research 349: 34–36. doi:10.1016/j.heares.2016.10.020.
    1. Dewey R. S., Hall D. A., Guest H., Prendergast G., Plack C. J., Francis S. T. (2018) The physiological bases of hidden noise-induced hearing loss: Protocol for a functional neuroimaging study. JMIR Research Protocols 7(3): e79, doi:10.2196/resprot.9095.
    1. Dunn D. E., Davis R. R., Merry C. J., Franks J. R. (1991) Hearing loss in the chinchilla from impact and continuous noise exposure. The Journal of the Acoustical Society of America 90(4): 1979–1985. doi:10.1121/1.401677.
    1. Federman J., Ricketts T. (2008) Preferred and minimum acceptable listening levels for musicians while using floor and in-ear monitors. Journal of Speech, Language, and Hearing Research 51(1): 147–159. doi:10.1044/1092-4388(2008/011).
    1. Ferguson, M. A., Tomlinson, K. B., Davis, A. C., & Lutman, M. E. (2018). A simple method to estimate noise levels in the workplace based on self-reported speech communication effort in noise. International Journal of Audiology.
    1. Flamme G. A., Wong A., Liebe K., Lynd J. (2009) Estimates of auditory risk from outdoor impulse noise. II: Civilian firearms. Noise & Health 11(45): 231–242. doi:10.4103/1463-1741.56217.
    1. Goley G. S., Song W. J., Kim J. H. (2011) Kurtosis corrected sound pressure level as a noise metric for risk assessment of occupational noises. The Journal of the Acoustical Society of America 129(3): 1475–1481. doi:10.1121/1.3533691.
    1. Guest H., Munro K. J., Prendergast G., Howe S., Plack C. J. (2017) Tinnitus with a normal audiogram: Relation to noise exposure but no evidence for cochlear synaptopathy. Hearing Research 344: 265–274. doi:10.1016/j.heares.2016.12.002.
    1. Hamernik R. P., Qiu W. (2001) Energy-independent factors influencing noise-induced hearing loss in the chinchilla model. The Journal of the Acoustical Society of America 110(6): 3163–3168. doi:10.1121/1.1414707.
    1. Hamernik R. P., Qiu W., Davis B. (2007) Hearing loss from interrupted, intermittent, and time varying non-Gaussian noise exposure: The applicability of the equal energy hypothesis. The Journal of the Acoustical Society of America 122(4): 2245–2254. doi:10.1121/1.2775160.
    1. Johnson T. A., Cooper S., Stamper G. C., Chertoff M. (2017) Noise Exposure Questionnaire (NEQ): A tool for quantifying annual noise exposure. Journal of the American Academy of Audiology 28(1): 14–35. doi:10.3766/jaaa.15070.
    1. Jokitulppo J., Toivonen M., Björk E. (2006) Estimated leisure-time noise exposure, hearing thresholds, and hearing symptoms of Finnish conscripts. Military Medicine 171(2): 112–116.
    1. Keppler H., Dhooge I., Vinck B. (2015) Hearing in young adults. Part II: The effects of recreational noise exposure. Noise & Health 17(78): 245, doi:10.4103/1463-1741.165026.
    1. Liberman, M. C., Epstein, M. J., Cleveland, S. S., Wang, H., & Maison, S. F. (2016). Toward a differential diagnosis of hidden hearing loss in humans. PLOS ONE, 11(9), e0162726. doi:10.1371/journal.pone.0162726.
    1. Liberman M. C., Kujawa S. G. (2017) Cochlear synaptopathy in acquired sensorineural hearing loss: Manifestations and mechanisms. Hearing Research 349: 138–147. doi:10.1016/j.heares.2017.01.003.
    1. Lutman, M. E., Davis, A. C., & Ferguson, M. A. (2008). Epidemiological evidence for the effectiveness of the noise at work regulations (Research report no. RR669). Sudbury, England: Health and Safety Executive.
    1. Lutman M. E., Spencer H. S. (1991) Occupational noise and demographic factors in hearing. Acta Oto-Laryngologica Supplementum 476: 74–84.
    1. Meinke D. K., Murphy W. J., Finan D. S., Lankford J. E., Flamme G. A., Stewart M., Jerome T. W. (2014) Auditory risk estimates for youth target shooting. International Journal of Audiology 53(Suppl 2): S16–S25. doi:10.3109/14992027.2013.865845.
    1. Moore D. R., Zobay O., Mackinnon R. C., Whitmer W. M., Akeroyd M. A. (2017) Lifetime leisure music exposure associated with increased frequency of tinnitus. Hearing Research 347: 18–27. doi:10.1016/j.heares.2016.10.030.
    1. Murphy, W. J., & Kardous, C. A. (2012). A case for using A-weighted equivalent energy as a damage risk criterion (In-depth survey report for the Engineering and Physical Hazards Branch report no. 350–11a). Cincinnati, OH: National Institute for Occupational Safety and Health.
    1. Nakashima, A. (2015). A comparison of metrics for impulse noise exposure—Analysis of noise data from small calibre weapons (Scientific report no. DRDC-RDDC-2015-R243). Toronto, Canada: Defence Research and Development Canada.
    1. Neitzel R., Seixas N., Goldman B., Daniell W. (2004) Contributions of non-occupational activities to total noise exposure of construction workers. The Annals of Occupational Hygiene 48(5): 463–473. doi:10.1093/annhyg/meh041.
    1. Portnuff C. D., Fligor B. J., Arehart K. H. (2011) Teenage use of portable listening devices: A hazard to hearing? Journal of the American Academy of Audiology 22(10): 663–677. doi:10.3766/jaaa.22.10.5.
    1. Prendergast G., Guest H., Munro K. J., Kluk K., Léger A., Hall D. A., Plack C. J. (2017) Effects of noise exposure on young adults with normal audiograms I: Electrophysiology. Hearing Research 344: 68–81. doi:10.1016/j.heares.2016.10.028.
    1. Prendergast G., Tu W., Guest H., Millman R. E., Kluk K., Couth S., Plack C. J. (2018) Supra-threshold auditory brainstem response amplitudes in humans: Test-retest reliability, electrode montage and noise exposure. Hearing Research 364: 38–47. doi:10.1016/j.heares.2018.04.002.
    1. Smith P. A., Davis A., Ferguson M., Lutman M. E. (2000) The prevalence and type of social noise exposure in young adults in England. Noise & Health 2(6): 41.
    1. Spankovich C., Le Prell C. G., Lobarinas E., Hood L. J. (2017) Noise history and auditory function in young adults with and without type 1 diabetes mellitus. Ear and Hearing 38(6): 724–735. doi:10.1097/AUD.0000000000000457.
    1. Welch, D., John, G., Grynevych, A., & Thorne, P. (2011). Assessment of life course noise exposure. Presented at the 10th International Congress on Noise as a Public Health Problem, London, UK.
    1. Wightman, F. L., Flamme, G. A., Campanella, A. J., & Luz, G. A. (2010). Peer review of injury prevention and reduction—Research task area: Impulse noise injury models (Peer-review report). Reston, VA: American Institute of Biological Sciences.
    1. Xie H.-W., Qiu W., Heyer N. J., Zhang M.-B., Zhang P., Zhao Y.-M., Hamernik R. P. (2016) The use of the kurtosis-adjusted cumulative noise exposure metric in evaluating the hearing loss risk for complex noise. Ear and Hearing 37(3): 312–323. doi:10.1097/AUD.0000000000000251.
    1. Yeend I., Beach E. F., Sharma M., Dillon H. (2017) The effects of noise exposure and musical training on suprathreshold auditory processing and speech perception in noise. Hearing Research 353: 224–236. doi:10.1016/j.heares.2017.07.006.
    1. Zhao Y.-M., Qiu W., Zeng L., Chen S.-S., Cheng X.-R., Davis R. I., Hamernik R. P. (2010) Application of the kurtosis statistic to the evaluation of the risk of hearing loss in workers exposed to high-level complex noise. Ear and Hearing 31(4): 527–532. doi:10.1097/AUD.0b013e3181d94e68.

Source: PubMed

3
Subscribe