Suction Assisted Laryngoscopy and Airway Decontamination (SALAD): A technique for improved emergency airway management

Christopher W Root, Oscar J L Mitchell, Russ Brown, Christopher B Evers, Jess Boyle, Cynthia Griffin, Frances Mae West, Edward Gomm, Edward Miles, Barry McGuire, Anand Swaminathan, Jonathan St George, James M Horowitz, James DuCanto, Christopher W Root, Oscar J L Mitchell, Russ Brown, Christopher B Evers, Jess Boyle, Cynthia Griffin, Frances Mae West, Edward Gomm, Edward Miles, Barry McGuire, Anand Swaminathan, Jonathan St George, James M Horowitz, James DuCanto

Abstract

Emergency airway management is often complicated by the presence of blood, emesis or other contaminants in the airway. Traditional airway management education has lacked task-specific training focused on mitigating massive airway contamination. The Suction Assisted Laryngoscopy and Airway Decontamination (SALAD) technique was developed in order to address the problem of massive airway contamination both in simulation training and in vivo. We review the evidence describing the dangers associated with airway contamination, and describe the SALAD technique in detail.

Keywords: Airway management; Anesthesia resuscitation; Emergency medicine; Intensive care; SALAD, (Suction Assisted Laryngoscopy and Airway Decontamination).

Conflict of interest statement

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Dr. DuCanto is the inventor of the Nasco SALAD Mannequin, SSCOR DuCanto Catheter, and the EM Innovations SEADUC. He receives royalties on these devices. Dr. DuCanto invented the SALAD Technique and does not receive any compensation for that innovation. Mr. Boyle has been compensated by SSCOR products for educational consultancy and technological assistance.

© 2020 The Author(s).

Figures

Fig. 1
Fig. 1
1a) The rigid suction catheter (RSC) is gripped overhand. 1b) The RSC displaces the structures of the upper airway. 1c) The airway is continuously suctioned as the laryngoscope blade is positioned. 1d) The RSC is withdrawn and repositioned to the left of the laryngoscope blade and seated in the hypopharynx in order to provide continuous suction. 1e) The endotracheal tube is delivered through the vocal cords. 1f) The endotracheal tube is suctioned prior to ventilation.

References

    1. Sakles J.C., Chiu S., Mosier J., Walker C., Stolz U. The importance of first pass success when performing orotracheal intubation in the emergency department. Acad Emerg Med. 2013;20(1):71–78. doi: 10.1111/acem.12055.
    1. Bernhard M., Becker T., Gries A., Knapp J., Wenzel V. The first shot is often the best shot: first-pass intubation success in emergency airway management. Anesth Analg. 2015;121(5):1389–1393. doi: 10.1213/ANE.0000000000000891.
    1. Mort T. Emergency tracheal intubation: complications associated with repeated laryngoscopic attempts. Anesth Analg. 2004;99(2):607–613. doi: 10.1213/01.ANE.0000122825.04923.15.
    1. Prekker M.E., Kwok H., Shin J., Carlbom D., Grabinsky A., Rea T.D. The process of prehospital airway management: challenges and solutions during paramedic endotracheal intubation∗. Crit Care Med. 2014;42(6):1372–1378. doi: 10.1097/CCM.0000000000000213.
    1. Ohchi F., Komasawa N., Mihara R., Hattori K., Minami T. Evaluation of gum-elastic bougie combined with direct and indirect laryngoscopes in vomitus setting: a randomized simulation trial. Am J Emerg Med. 2017;35(4):584–588. doi: 10.1016/j.ajem.2016.12.032.
    1. Mihara R., Komasawa N., Matsunami S., Minami T. Comparison of direct and indirect laryngoscopes in vomitus and hematemesis settings: a randomized simulation trial. BioMed Res Int. 2015;2015 doi: 10.1155/2015/806243.
    1. Sakles J.C., Corn G.J., Hollinger P., Arcaris B., Patanwala A.E., Mosier J.M. The impact of a soiled airway on intubation success in the emergency department when using the GlideScope or the direct laryngoscope. Acad Emerg Med. 2017;24(5):628–636. doi: 10.1111/acem.13160.
    1. Joshi R., Hypes C.D., Greenberg J. Difficult airway characteristics associated with first-attempt failure at intubation using video laryngoscopy in the intensive care unit. Ann Am Thorac Soc. 2016;14(3):368–375. doi: 10.1513/AnnalsATS.201606-472OC.
    1. Burns B., Habig K., Eason H., Ware S. Difficult intubation factors in prehospital rapid sequence intubation by an Australian helicopter emergency medical service. Air Med J. 2016;35(1):28–32. doi: 10.1016/j.amj.2015.10.002.
    1. Gaither J.B., Spaite D.W., Stolz U., Ennis J., Mosier J., Sakles J.J. Prevalence of difficult airway predictors in cases of failed prehospital endotracheal intubation. J Emerg Med. 2014;47(3):294–300. doi: 10.1016/j.jemermed.2014.04.021.
    1. Cook T.M., Woodall N., Frerk C. Major complications of airway management in the UK: results of the fourth national Audit Project of the royal College of Anaesthetists and the difficult airway society. Part 1: anaesthesia†. Br J Anaesth. 2011;106(5):617–631. doi: 10.1093/bja/aer058.
    1. Warner M.A., Warner M.E., Weber J.G. Clinical significance of pulmonary aspiration during the perioperative period. Anesthesiol J Am Soc Anesthesiol. 1993;78(1):56–62.
    1. Robinson M., Davidson A. Aspiration under anaesthesia: risk assessment and decision-making. Cont Educ Anaesth Crit Care Pain. 2014;14(4):171–175. doi: 10.1093/bjaceaccp/mkt053.
    1. Miles E.T., Cook T.M. Critical incidents: the respiratory system. Anaesth Intensive Care Med. 2019;20(12):687–692. doi: 10.1016/j.mpaic.2019.10.007.
    1. Kluger M.T., Visvanathan T., Myburgh J.A., Westhorpe R.N. Crisis management during anaesthesia: regurgitation, vomiting, and aspiration. BMJ Qual Saf. 2005;14(3) doi: 10.1136/qshc.2002.004259. e4-e4.
    1. Kozak R.J., Ginther B.E., Bean W.S. Difficulties with portable suction equipment used for prehospital advanced airway procedures. Prehospital Emerg Care Off J Natl Assoc EMS Physicians Natl Assoc State EMS Dir. 1997;1(2):91–95.
    1. McDonald D.S. Blocked yankauer sucker. Anaesthesia. 1996;51(4):405–406. doi: 10.1111/j.1365-2044.1996.tb07767.x.
    1. Cox R., Andreae M., Shy B., DuCanto J., Strayer R. Yankauer suction catheters with “safety” vent holes may impair safety in emergent airway management. Am J Emerg Med. 2017;35(11):1762–1763. doi: 10.1016/j.ajem.2017.04.009.
    1. Shah K., Weingart S. Suction tubing reversal as a dormant failure during airway management. Am J Emerg Med. 2018;36(12) doi: 10.1016/j.ajem.2018.08.059. 2336.e3-2336.e4.
    1. Kei J., Mebust D.P. Comparing the effectiveness of a novel suction set-up using an adult endotracheal tube connected to a meconium aspirator vs. a traditional yankauer suction instrument. J Emerg Med. 2017;52(4):433–437. doi: 10.1016/j.jemermed.2016.09.006.
    1. Andreae M.C., Cox R.D., Shy B.D., Wong N., Strayer R.J. 319 yankauer outperformed by alternative suction devices in evacuation of simulated emesis. Ann Emerg Med. 2016;68(4):S123. doi: 10.1016/j.annemergmed.2016.08.335.
    1. Lane S., Saunders D., Schofield A., Padmanabhan R., Hildreth A., Laws D. A prospective, randomised controlled trial comparing the efficacy of pre-oxygenation in the 20° head-up vs supine position∗. Anaesthesia. 2005;60(11):1064–1067. doi: 10.1111/j.1365-2044.2005.04374.x.
    1. Ramkumar V., Umesh G., Philip F.A. Preoxygenation with 20o head-up tilt provides longer duration of non-hypoxic apnea than conventional preoxygenation in non-obese healthy adults. J Anesth. 2011;25(2):189–194. doi: 10.1007/s00540-011-1098-3.
    1. Lee B.J., Kang J.M., Kim D.O. Laryngeal exposure during laryngoscopy is better in the 25° back-up position than in the supine position. Br J Anaesth. 2007;99(4):581–586. doi: 10.1093/bja/aem095.
    1. Driver B.E., Prekker M.E., Klein L.R. Effect of use of a bougie vs endotracheal tube and stylet on first-attempt intubation success among patients with difficult airways undergoing emergency intubation: a randomized clinical trial. J Am Med Assoc. 2018;319(21):2179–2189. doi: 10.1001/jama.2018.6496.
    1. Chow Y. Recipe for SALAD (suction assisted laryngoscopy airway decontamination) simulation AKA “VomiQuin.” airwayNautics. October 2015. Accessed June 28, 2019.
    1. DuCanto J., Serrano K.D., Thompson R.J. Novel airway training tool that simulates vomiting: suction-assisted laryngoscopy assisted decontamination (SALAD) system. West J Emerg Med. 2017;18(1):117–120. doi: 10.5811/westjem.2016.9.30891.
    1. Della Vella C., Thompson R.J., Serrano K., Riess M.L., Ducanto J. Suction-Assisted Laryngoscopy-Assisted Decontamination (SALAD) simulator for difficult airway management. Trends Anaesth Crit Care. 2018;23:32. doi: 10.1016/j.tacc.2018.09.060.
    1. Pilbery R., Teare M.D. Soiled airway tracheal intubation and the effectiveness of decontamination by paramedics (SATIATED): a randomised controlled manikin study. 2019. Published June 1, 2019. Accessed June 5.
    1. Lin L.-W., Huang C.-C., Ong J.R., Chong C.-F., Wu N.-Y., Hung S.-W. The suction-assisted laryngoscopy assisted decontamination technique toward successful intubation during massive vomiting simulation: a pilot before–after study. Medicine (Baltim) 2019;98(46) doi: 10.1097/MD.0000000000017898.
    1. Jensen M., Louka A., Barmaan B. Effect of suction assisted laryngoscopy airway decontamination (SALAD) training on intubation quality metrics. Air Med J. 2019;38(5):325. doi: 10.1016/j.amj.2019.07.002.
    1. Jensen M., Barmaan B., Orndahl C.M., Louka A. Impact of suction-assisted laryngoscopy and airway decontamination technique on intubation quality metrics in a helicopter emergency medical service: an educational intervention. Air Med J. November. 2019 doi: 10.1016/j.amj.2019.10.005.
    1. Fiore M.P., Marmer S.L., Steuerwald M.T., Thompson R.J., Galgon R.E. Three airway management techniques for airway decontamination in massive emesis: a manikin study. West J Emerg Med Integrating Emerg Care Popul Health. 2019;20(5) doi: 10.5811/westjem.2019.6.42222.

Source: PubMed

3
Subscribe