In Vitro Activity and Microbiological Efficacy of Gepotidacin from a Phase 2, Randomized, Multicenter, Dose-Ranging Study in Patients with Acute Bacterial Skin and Skin Structure Infections

Nicole E Scangarella-Oman, Karen A Ingraham, Courtney A Tiffany, Lynn Tomsho, Stephanie F Van Horn, David N Mayhew, Caroline R Perry, Theresa C Ashton, Etienne F Dumont, Jianzhong Huang, James R Brown, Linda A Miller, Nicole E Scangarella-Oman, Karen A Ingraham, Courtney A Tiffany, Lynn Tomsho, Stephanie F Van Horn, David N Mayhew, Caroline R Perry, Theresa C Ashton, Etienne F Dumont, Jianzhong Huang, James R Brown, Linda A Miller

Abstract

A phase 2 study of gepotidacin demonstrated the safety and efficacy of 3 gepotidacin doses (750 mg every 12 h [q12h], 1,000 mg q12h, and 1,000 mg every 8 h [q8h]) in hospitalized patients with suspected/confirmed Gram-positive acute bacterial skin and skin structure infections (ABSSSIs). Evaluating microbiology outcomes and responses were secondary endpoints. Pretreatment isolates recovered from infected lesions underwent susceptibility testing per Clinical and Laboratory Standards Institute guidelines. Staphylococcus aureus accounted for 78/102 (76%) of Gram-positive isolates; 54/78 (69%) were methicillin-resistant S. aureus (MRSA), and 24/78 (31%) were methicillin-susceptible S. aureus (MSSA). Posttherapy microbiological success (culture-confirmed eradication of the pretreatment pathogen or presumed eradication based on a clinical outcome of success) for S. aureus was 90% for the gepotidacin 750-mg q12h group, 89% for the 1,000-mg q12h, and 73% in the 1000-mg q8h group. For 78 S. aureus isolates obtained from pretreatment lesions, gepotidacin MIC50/MIC90 values were 0.25/0.5 μg/ml against both MRSA and MSSA. Isolates recovered from the few patients with posttreatment cultures showed no significant reduction in gepotidacin susceptibility (≥4-fold MIC increase) between pretreatment and posttreatment isolates. Two of the 78 S. aureus isolates from pretreatment lesions had elevated gepotidacin MICs and had mutations known to occur in quinolone-resistant S. aureus (GyrA S84L, ParC S80Y, and ParE D422E) or to confer elevated MICs to novel bacterial topoisomerase inhibitors (GyrA D83N, both isolates; ParC V67A, one isolate). This first report of microbiological outcomes and responses of gepotidacin in patients with ABSSSIs supports further evaluation of gepotidacin as a novel first-in-class antibacterial agent. (This study has been registered at ClinicalTrials.gov under identifier NCT02045797.).

Keywords: ABSSSI; GSK2140944; MRSA; MSSA; S. aureus; antibacterial agent; gepotidacin; skin infection.

Copyright © 2020 Scangarella-Oman et al.

Figures

FIG 1
FIG 1
Frequency distribution of gepotidacin MICs against S. aureus isolates from pretreatment lesion samples (mMITT population). GEP, gepotidacin; mMITT, modified microbiological intent-to-treat; MRSA, methicillin-resistant S. aureus; MSSA, methicillin-susceptible S. aureus.
FIG 2
FIG 2
Phylogenetic maximum likelihood tree constructed from a ClustalW alignment of a concatenated set of gene sequences from the 12 isolates in the present study and another 2 reference genomes from GenBank. Nodes of branch points marked with an asterisk were supported in more than 80% of 1,000 bootstrap replications. The scale bar indicates the number of substitutions per position for a unit branch length. Gepotidacin MICs and strain types from MLST analysis appear for each of the sequenced isolates. Gep, gepotidacin; MLST, multilocus sequence typing.

References

    1. Pulido-Cejudo A, Guzmán-Gutierrez M, Jalife-Montaño A, Ortiz-Covarrubias A, Martínez-Ordaz JL, Noyola-Villalobos HF, Hurtado-López LM. 2017. Management of acute bacterial skin and skin structure infections with a focus on patients at high risk of treatment failure. Ther Adv Infect Dis 4:143–161. doi:10.1177/2049936117723228.
    1. Garau J, Ostermann H, Medina J, Avila M, McBride K, Blasi F, REACH study group . 2013. Current management of patients hospitalized with complicated skin and soft tissue infections across Europe (2010-2011): assessment of clinical practice patterns and real-life effectiveness of antibiotics from the REACH study. Clin Microbiol Infect 19:E377–E385. doi:10.1111/1469-0691.12235.
    1. Ray GT, Suaya JA, Baxter R. 2013. Incidence, microbiology, and patient characteristics of skin and soft-tissue infections in a U.S. population: a retrospective population-based study. BMC Infect Dis 13:252. doi:10.1186/1471-2334-13-252.
    1. Shen HN, Lu CL. 2010. Skin and soft tissue infections in hospitalized and critically ill patients: a nationwide population-based study. BMC Infect Dis 10:151. doi:10.1186/1471-2334-10-151.
    1. Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, Kaplan SL, Karchmer AW, Levine DP, Murray BE, Rybak MJ, Talan DA, Chambers HF. 2011. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children: executive summary. Clin Infect Dis 52:285–292. doi:10.1093/cid/cir034.
    1. Stevens DL, Bisno AL, Chambers HF, Dellinger EP, Goldstein EJ, Gorbach SL, Hirschmann JV, Kaplan SL, Montoya JG, Wade JC. 2014. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the Infectious Diseases Society of America. Clin Infect Dis 59:e10-52. doi:10.1093/cid/ciu296.
    1. Zhao C, Liu Y, Zhao M, Liu Y, Yu Y, Chen H, Sun Q, Chen H, Jiang W, Liu Y, Han S, Xu Y, Chen M, Cao B, Wang H. 2012. Characterization of community acquired Staphylococcus aureus associated with skin and soft tissue infection in Beijing: high prevalence of PVL+ ST398. PLoS One 7:e38577. doi:10.1371/journal.pone.0038577.
    1. Hersh AL, Chambers HF, Maselli JH, Gonzales R. 2008. National trends in ambulatory visits and antibiotic prescribing for skin and soft-tissue infections. Arch Intern Med 168:1585–1591. doi:10.1001/archinte.168.14.1585.
    1. Merritt C, Haran JP, Mintzer J, Stricker J, Merchant RC. 2013. All purulence is local - epidemiology and management of skin and soft tissue infections in three urban emergency departments. BMC Emerg Med 13:26. doi:10.1186/1471-227X-13-26.
    1. Russo A, Concia E, Cristini F, De Rosa FG, Esposito S, Menichetti F, Petrosillo N, Tumbarello M, Venditti M, Viale P, Viscoli C, Bassetti M. 2016. Current and future trends in antibiotic therapy of acute bacterial skin and skin-structure infections. Clin Microbiol Infect 22 Suppl 2:S27–S36. doi:10.1016/S1198-743X(16)30095-7.
    1. May AK. 2009. Skin and soft tissue infections. Surg Clin North Am 89:403–420. viii. doi:10.1016/j.suc.2008.09.006.
    1. Kaye KS, Patel DA, Stephens JM, Khachatryan A, Patel A, Johnson K. 2015. Rising United States hospital admissions for acute bacterial skin and skin structure infections: recent trends and economic impact. PLoS One 10:e0143276. doi:10.1371/journal.pone.0143276.
    1. Moran GJ, Abrahamian FM, Lovecchio F, Talan DA. 2013. Acute bacterial skin infections: developments since the 2005 Infectious Diseases Society of America (IDSA) guidelines. J Emerg Med 44:e397–e412. doi:10.1016/j.jemermed.2012.11.050.
    1. Bax BD, Chan PF, Eggleston DS, Fosberry A, Gentry DR, Gorrec F, Giordano I, Hann MM, Hennessy A, Hibbs M, Huang J, Jones E, Jones J, Brown KK, Lewis CJ, May EW, Saunders MR, Singh O, Spitzfaden CE, Shen C, Shillings A, Theobald AJ, Wohlkonig A, Pearson ND, Gwynn MN. 2010. Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature 466:935–940. doi:10.1038/nature09197.
    1. O’Riordan W, Tiffany C, Scangarella-Oman N, Perry C, Hossain M, Ashton T, Dumont E. 2017. Efficacy, safety, and tolerability of gepotidacin (GSK2140944) in the treatment of patients with suspected or confirmed Gram-positive acute bacterial skin and skin structure infections. Antimicrob Agents Chemother 61:e02095-16. doi:10.1128/AAC.02095-16.
    1. Hooper DC. 2002. Fluoroquinolone resistance among Gram-positive cocci. Lancet Infect Dis 2:530–538. doi:10.1016/s1473-3099(02)00369-9.
    1. Trong HN, Prunier AL, Leclercq R. 2005. Hypermutable and fluoroquinolone-resistant clinical isolates of Staphylococcus aureus. Antimicrob Agents Chemother 49:2098–2101. doi:10.1128/AAC.49.5.2098-2101.2005.
    1. Hooper DC, Jacoby GA, Hooper DC, Jacoby GA. 2016. Topoisomerase inhibitors: fluoroquinolone mechanisms of action and resistance. Cold Spring Harb Perspect Med 6:a025320. doi:10.1101/cshperspect.a025320.
    1. Black MT, Stachyra T, Platel D, Girard AM, Claudon M, Bruneau JM, Miossec C. 2008. Mechanism of action of the antibiotic NXL101, a novel nonfluoroquinolone inhibitor of bacterial type II topoisomerases. Antimicrob Agents Chemother 52:3339–3349. doi:10.1128/AAC.00496-08.
    1. Bulik CC, Okusanya OO, Lakota EA, Forrest A, Bhavnani SM, Hoover JL, Andes DR, Ambrose PG. 2017. Pharmacokinetic-pharmacodynamic evaluation of gepotidacin against Gram-positive organisms using data from murine infection models. Antimicrob Agents Chemother 61:e00115. doi:10.1128/AAC.00115-16.
    1. Scangarella-Oman NE, Hossain M, Dixon PB, Ingraham K, Min S, Tiffany CA, Perry CR, Raychaudhuri A, Dumont EF, Huang J, Hook EW, Miller LA, Scangarella-Oman NE, Hossain M, Dixon PB, Ingraham K, Min S, Tiffany CA, Perry CR, Raychaudhuri A, Dumont EF, Huang J, Hook EW, Miller LA. 2018. Microbiological analysis from a phase 2 randomized study in adults evaluating single oral doses of gepotidacin in the treatment of uncomplicated urogenital gonorrhea caused by Neisseria gonorrhoeae. Antimicrob Agents Chemother 62: e01221-18. doi:10.1128/AAC.01221-18.
    1. Taylor SN, Morris DH, Avery AK, Workowski KA, Batteiger BE, Tiffany CA, Perry CR, Raychaudhuri A, Scangarella-Oman NE, Hossain M, Dumont EF. 2018. Gepotidacin for the treatment of uncomplicated urogenital gonorrhea: a phase 2, randomized, dose-ranging, single-oral dose evaluation. Clin Infect Dis 67:504–512. doi:10.1093/cid/ciy145.
    1. Biedenbach DJ, Bouchillon SK, Hackel M, Miller LA, Scangarella-Oman NE, Jakielaszek C, Sahm DF. 2016. In vitro activity of gepotidacin, a novel triazaacenaphthylene bacterial topoisomerase inhibitor, against a broad spectrum of bacterial pathogens. Antimicrob Agents Chemother 60:1918–1923. doi:10.1128/AAC.02820-15.
    1. Merck & Co., Inc. 2017. Sivextro package insert. Merck & Co., Inc, Whitehouse Station, NJ.
    1. Allergan USA, Inc. 2018. Dalvance package insert. Allergan USA, Inc, Madison, NJ.
    1. Melinta Therapeutics, Inc. 2019. Orbactiv package insert. Melinta Therapeutics, Inc, Lincolnshire, IL.
    1. Pan XS, Hamlyn PJ, Talens-Visconti R, Alovero FL, Manzo RH, Fisher ML. 2002. Small-colony mutants of Staphylococcus aureus allow selection of gyrase-mediated resistance to dual-target fluoroquinolones. Antimicrob Agents Chemother 46:2498–2506. doi:10.1128/aac.46.8.2498-2506.2002.
    1. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi:10.1093/bioinformatics/btu170.
    1. Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG. 2000. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol 38:1008–1015.
    1. Deatherage DE, Barrick JE. 2014. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. Methods Mol Biol 1151:165–188. doi:10.1007/978-1-4939-0554-6_12.
    1. Felsenstein J. 1989. PHYLIP–Phylogeny Inference Package (version 3.2). Cladistics 5:164–166.
    1. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197.

Source: PubMed

3
Subscribe