Iron Deficiency Impacts Diastolic Function, Aerobic Exercise Capacity, and Patient Phenotyping in Heart Failure With Preserved Ejection Fraction: A Subanalysis of the OptimEx-Clin Study

Andreas B Gevaert, Stephan Mueller, Ephraim B Winzer, André Duvinage, Caroline M Van de Heyning, Elisabeth Pieske-Kraigher, Paul J Beckers, Frank Edelmann, Ulrik Wisløff, Burkert Pieske, Volker Adams, Martin Halle, Emeline M Van Craenenbroeck, OptimEx-Clin Study Group, Andreas B Gevaert, Stephan Mueller, Ephraim B Winzer, André Duvinage, Caroline M Van de Heyning, Elisabeth Pieske-Kraigher, Paul J Beckers, Frank Edelmann, Ulrik Wisløff, Burkert Pieske, Volker Adams, Martin Halle, Emeline M Van Craenenbroeck, OptimEx-Clin Study Group

Abstract

Aims: Iron deficiency (ID) is linked to reduced aerobic exercise capacity and poor prognosis in patients with heart failure (HF) with reduced ejection fraction (HFrEF); however, data for HF with preserved ejection fraction (HFpEF) is scarce. We assessed the relationship between iron status and diastolic dysfunction as well as aerobic exercise capacity in HFpEF, and the contribution of iron status to patient phenotyping.

Methods and results: Among 180 patients with HFpEF (66% women; median age, 71 years) recruited for the Optimizing Exercise Training in Prevention and Treatment of Diastolic HF (OptimEx-Clin) trial, baseline iron status, including iron, ferritin, and transferrin saturation, was analyzed (n = 169) in addition to exercise capacity (peak oxygen uptake [peak V̇O2]) and diastolic function (E/e'). ID was present in 60% of patients and was more common in women. In multivariable linear regression models, we found that diastolic function and peak V̇O2 were independently related to iron parameters; however, these relationships were present only in patients with HFpEF and ID [E/e' and iron: β-0.19 (95% confidence interval -0.32, -0.07), p = 0.003; E/e' and transferrin saturation: β-0.16 (-0.28, -0.04), p = 0.011; peak V̇O2 and iron: β 3.76 (1.08, 6.44), p = 0.007; peak V̇O2 and transferrin saturation: β 3.58 (0.99, 6.16), p = 0.007]. Applying machine learning, patients were classified into three phenogroups. One phenogroup was predominantly characterized by the female sex and few HFpEF risk factors but a high prevalence of ID (86%, p < 0.001 vs. other phenogroups). When excluding ID from the phenotyping analysis, results were negatively influenced.

Conclusion: Iron parameters are independently associated with impaired diastolic function and low aerobic capacity in patients with HFpEF and ID. Patient phenotyping in HFpEF is influenced by including ID.

Clinical trial registration: www.ClinicalTrials.gov, identifier NCT02078947.

Keywords: HFpEF; artificial intelligence; diastolic dysfunction; echocardiography; exercise testing; heart failure; iron deficiency; machine learning.

Conflict of interest statement

AG reports travel and accommodation funding by Vifor Pharma. EW reported receiving personal fees from Novartis (honoraria for lectures and advisory board activities), Boehringer Ingelheim (honoraria for advisory board activities), and CVRX (honoraria for lectures) outside the submitted work. AD reported receiving grants from Novartis outside the submitted work. CV reported receiving personal fees from Abbott, Daiichi-Sankyo, Bayer and Edwards Lifesciences (lectures) outside the submitted work. BP reported receiving personal fees from Bayer Healthcare (steering committee, lectures), Merck (steering committee, lectures), Novartis (steering committee, lectures), Servier, AstraZeneca (lectures), Bristol-Myers Squibb (lectures), and Medscape (lectures) outside the submitted work. MH reported receiving grants from Novartis (principal investigator of the Activity Study in HFrEF) and personal fees from Bristol-Myers Squibb, Berlin Chemie-Menarini, Novartis, Daiichi-Sankyo, AstraZeneca, Roche, Abbott (advisory board on exercise and diabetes), Sanofi, Pfizer, Boehringer Ingelheim, and Bayer outside the submitted work. EV was supported by an investigator-initiated grant from Vifor Pharma for this work. No other disclosures were reported. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Gevaert, Mueller, Winzer, Duvinage, Van de Heyning, Pieske-Kraigher, Beckers, Edelmann, Wisløff, Pieske, Adams, Halle and Van Craenenbroeck.

Figures

FIGURE 1
FIGURE 1
Relationship of iron parameters to E/e′ septal ratio and peak V̇O2 in patients with HFpEF, stratified according to iron status. (A) Transferrin saturation and E/e′ septal ratio, both log scale. (B) Transferrin saturation (log scale) and peak V̇O2. (C) Iron and E/e′ septal ratio, both log scale. (D) Iron (log scale) and peak V̇O2. P-values from linear regression analyses in patients with ID and without ID. ID, iron deficiency; NID, no iron deficiency; peak V̇O2, peak oxygen uptake.
FIGURE 2
FIGURE 2
Three phenogroups of patients with HFpEF identified through machine learning and their characteristics. Heatmap with columns representing individual patients and rows representing individual characteristics, both grouped in clusters by unsupervised machine learning. Three phenogroups (numbers 1–3) and 9 characteristics clusters (letters A–I) were distinguished. ACE, angiotensin-converting enzyme; ARB, angiotensin receptor blocker; Clin, clinical examination; CVD, cardiovascular disease; Echo, echocardiography; EGFR, estimated glomerular filtration rate; Hist, medical history; KCCQ, Kansas City Cardiomyopathy Questionnaire; LAVi, left atrial volume index; LV, left ventricular; Med, current medication; NT-proBNP, N-terminal pro-B-type natriuretic peptide; NYHA, New York Heart Association; TAPSE, tricuspid annular plane systolic excursion; TR, tricuspid regurgitation; V̇CO2, carbon dioxide production; V̇E, ventilation; V̇O2, oxygen uptake.

References

    1. Anker S. D., Comin Colet J., Filippatos G., Willenheimer R., Dickstein K., Drexler H., et al. (2009). Ferric carboxymaltose in patients with heart failure and iron deficiency. N. Engl. J. Med. 361 2436–2448. 10.1056/NEJMoa0908355
    1. Barandiarán Aizpurua A., Sanders-van Wijk S., Brunner-La Rocca H., Henkens M. T. H. M., Weerts J., Spanjers M. H. A., et al. (2021). Iron deficiency impacts prognosis but less exercise capacity in heart failure with preserved ejection fraction. ESC Heart Fail 8 1304–1313. 10.1002/ehf2.13204
    1. Beale A. L., Meyer P., Marwick T. H., Lam C. S. P., Kaye D. M. (2018). Sex differences in cardiovascular pathophysiology. Circulation 138 198–205. 10.1161/CIRCULATIONAHA.118.034271
    1. Beale A. L., Warren J. L., Roberts N., Meyer P., Townsend N. P., Kaye D. (2019). Iron deficiency in heart failure with preserved ejection fraction: a systematic review and meta-analysis. Open Heart 6:e001012. 10.1136/openhrt-2019-001012
    1. Gallagher D., Heymsfield S. B., Heo M., Jebb S. A., Murgatroyd P. R., Sakamoto Y. (2000). Healthy percentage body fat ranges: an approach for developing guidelines based on body mass index. Am. J. Clin. Nutr. 72 694–701. 10.1093/ajcn/72.3.694
    1. Gevaert A. B., Adams V., Bahls M., Bowen T. S., Cornelissen V., Dörr M., et al. (2020). Towards a personalised approach in exercise-based cardiovascular rehabilitation: how can translational research help? A ‘call to action’ from the section on secondary prevention and cardiac rehabilitation of the European association of preventive cardiolo. Eur. J. Prev. Cardiol. 27 1369–1385. 10.1177/2047487319877716
    1. Gevaert A. B., Boen J. R. A., Segers V. F., Van Craenenbroeck E. M. (2019). Heart failure with preserved ejection fraction: a review of cardiac and noncardiac pathophysiology. Front. Physiol. 10:638. 10.3389/fphys.2019.00638
    1. Gevaert A. B., Kataria R., Zannad F., Sauer A., Damman K., Sharma K., et al. (2022). Heart failure with preserved ejection fraction: recent concepts in diagnosis, mechanisms and management. Heart 1–9. 10.1136/heartjnl-2021-319605 [Epub ahead of print].
    1. Gevaert A. B., Tibebu S., Mamas M. A., Ravindra N. G., Lee S. F., Ahmad T., et al. (2021). Clinical phenogroups are more effective than left ventricular ejection fraction categories in stratifying heart failure outcomes. ESC Heart Fail 8 2741–2754. 10.1002/ehf2.13344
    1. Grote Beverborg N., Klip I. T., Meijers W. C., Voors A. A., Vegter E. L., van der Wal HH, et al. (2018). Definition of Iron deficiency based on the gold standard of bone marrow iron staining in heart failure patients. Circ. Heart Fail 11:e004519. 10.1161/CIRCHEARTFAILURE.117.004519
    1. Guazzi M., Adams V., Conraads V., Halle M., Mezzani A., Vanhees L., et al. (2012). Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Eur. Heart J. 33 2917–2927. 10.1093/eurheartj/ehs221
    1. Hedman ÅK., Hage C., Sharma A., Brosnan M. J., Buckbinder L., Gan L.-M., et al. (2020). Identification of novel pheno-groups in heart failure with preserved ejection fraction using machine learning. Heart 106 342–349. 10.1136/heartjnl-2019-315481
    1. Hennig C. (2007). Cluster-wise assessment of cluster stability. Comput. Stat. Data Anal. 52 258–271. 10.1016/j.csda.2006.11.025
    1. Hoes M. F., Grote Beverborg N., Kijlstra J. D., Kuipers J., Swinkels D. W., Giepmans B. N. G., et al. (2018). Iron deficiency impairs contractility of human cardiomyocytes through decreased mitochondrial function. Eur. J. Heart Fail 20 910–919. 10.1002/ejhf.1154
    1. Jankowska E. A., Rozentryt P., Witkowska A., Nowak J., Hartmann O., Ponikowska B., et al. (2010). Iron deficiency: an ominous sign in patients with systolic chronic heart failure. Eur. Heart J. 31 1872–1880. 10.1093/eurheartj/ehq158
    1. Jankowska E. A., Von Haehling S., Anker S. D., MacDougall I. C., Ponikowski P. (2013). Iron deficiency and heart failure: diagnostic dilemmas and therapeutic perspectives. Eur. Heart J. 34 816–826. 10.1093/eurheartj/ehs224
    1. Kao D. P., Lewsey J. D., Anand I. S., Massie B. M., Zile M. R., Carson P. E., et al. (2015). Characterization of subgroups of heart failure patients with preserved ejection fraction with possible implications for prognosis and treatment response. Eur. J. Heart Fail 17 925–935. 10.1002/ejhf.327
    1. Kasner M., Aleksandrov A. S., Westermann D., Lassner D., Gross M., Von Haehling S., et al. (2013). Functional iron deficiency and diastolic function in heart failure with preserved ejection fraction. Int. J. Cardiol. 168 4652–4657. 10.1016/j.ijcard.2013.07.185
    1. Kaufman L., Rousseeuw P. J. (1990). Finding Groups in Data. Hoboken, NJ: John Wiley & Sons, Inc.
    1. Klip I. T., Comin-Colet J., Voors A. A., Ponikowski P., Enjuanes C., Banasiak W., et al. (2013). Iron deficiency in chronic heart failure: an international pooled analysis. Am. Heart J. 165 575.e3–582.e3. 10.1016/j.ahj.2013.01.017
    1. Lewis G. D., Malhotra R., Hernandez A. F., McNulty S. E., Smith A., Felker G. M., et al. (2017). Effect of Oral Iron repletion on exercise capacity in patients with heart failure with reduced ejection fraction and iron deficiency. JAMA 317 1958–1966. 10.1001/jama.2017.5427
    1. Macdougall I. C., Canaud B., De Francisco A. L. M., Filippatos G., Ponikowski P., Silverberg D., et al. (2012). Beyond the cardiorenal anaemia syndrome: recognizing the role of iron deficiency. Eur. J. Heart Fail 14 882–886. 10.1093/eurjhf/hfs056
    1. Martens P., Claessen G., Van De Bruaene A., Verbrugge F. H., Herbots L., Dendale P., et al. (2021). Iron deficiency is associated with impaired biventricular reserve and reduced exercise capacity in patients with unexplained dyspnea. J. Card Fail 27 766–776. 10.1016/j.cardfail.2021.03.010
    1. Martens P., Nijst P., Verbrugge F. H., Smeets K., Dupont M., Mullens W. (2018). Impact of iron deficiency on exercise capacity and outcome in heart failure with reduced, mid-range and preserved ejection fraction. Acta Cardiol. 73 115–123. 10.1080/00015385.2017.1351239
    1. Melenovsky V., Hlavata K., Sedivy P., Dezortova M., Borlaug B. A., Petrak J., et al. (2018). Skeletal muscle abnormalities and Iron deficiency in chronic heart failure. Circ. Heart Fail 11:e004800. 10.1161/CIRCHEARTFAILURE.117.004800
    1. Mueller S., Winzer E. B., Duvinage A., Gevaert A. B., Edelmann F., Haller B., et al. (2021). Effect of high intensity interval training, moderate continuous training, or guideline-based physical activity advice on peak oxygen consumption in patients with heart failure with preserved ejection fraction: a randomized clinical trial. JAMA 325 542–551. 10.1001/jama.2020.26812
    1. Naito Y., Tsujino T., Fujimori Y., Sawada H., Akahori H., Hirotani S., et al. (2011). Impaired expression of duodenal iron transporters in Dahl salt-sensitive heart failure rats. J. Hypertens. 29 741–748. 10.1097/HJH.0b013e3283434784
    1. Naito Y., Tsujino T., Matsumoto M., Sakoda T., Ohyanagi M., Masuyama T. (2009). Adaptive response of the heart to long-term anemia induced by iron deficiency. Am. J. Physiol. Heart Circ. Physiol. 296 H585–H593. 10.1152/ajpheart.00463.2008
    1. Nes B. M., Janszky I., Wisløff U., Støylen A., Karlsen T. (2013). Age-predicted maximal heart rate in healthy subjects: the HUNT fitness study. Scand. J. Med. Sci. Sports 23 697–704. 10.1111/j.1600-0838.2012.01445.x
    1. Núñez J., Domínguez E., Ramón J. M., Núñez E., Sanchis J., Santas E., et al. (2016). Iron deficiency and functional capacity in patients with advanced heart failure with preserved ejection fraction. Int. J. Cardiol. 207 365–367. 10.1016/j.ijcard.2016.01.187
    1. Núñez J., Miñana G., Cardells I., Palau P., Llàcer P., Fácila L., et al. (2020). Noninvasive imaging estimation of myocardial iron repletion following administration of intravenous iron: the myocardial-IRON trial. J. Am. Heart Assoc. 9:e014254. 10.1161/JAHA.119.014254
    1. Okonko D. O., Mandal A. K. J., Missouris C. G., Poole-Wilson P. A. (2011). Disordered iron homeostasis in chronic heart failure: prevalence, predictors, and relation to anemia, exercise capacity, and survival. J. Am. Coll. Cardiol. 58 1241–1251. 10.1016/j.jacc.2011.04.040
    1. Paulus W. J., Tschöpe C. (2013). A novel paradigm for heart failure with preserved ejection fraction. J. Am. Coll. Cardiol. 62 263–271. 10.1016/j.jacc.2013.02.092
    1. Paulus W. J., Tschöpe C., Sanderson J. E., Rusconi C., Flachskampf F. A., Rademakers F., et al. (2007). How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the heart failure and echocardiography Associations of the European society of cardiology. Eur. Heart J. 28 2539–2550. 10.1093/eurheartj/ehm037
    1. Ponikowski P., Kirwan B.-A., Anker S. D., McDonagh T., Dorobantu M., Drozdz J., et al. (2020). Ferric carboxymaltose for iron deficiency at discharge after acute heart failure: a multicentre, double-blind, randomised, controlled trial. Lancet 396 1895–1904. 10.1016/S0140-6736(20)32339-4
    1. Ponikowski P., Van Veldhuisen D. J., Comin-Colet J., Ertl G., Komajda M., Mareev V., et al. (2015). Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiency. Eur. Heart J. 36 657–668. 10.1093/eurheartj/ehu385
    1. Poole D. C., Richardson R. S., Haykowsky M. J., Hirai D. M., Musch T. I. (2018). Exercise limitations in heart failure with reduced and preserved ejection fraction. J. Appl. Physiol. 124 208–224. 10.1152/japplphysiol.00747.2017
    1. Pugliese N. R., Fabiani I., Santini C., Rovai I., Pedrinelli R., Natali A., et al. (2019). Value of combined cardiopulmonary and echocardiography stress test to characterize the haemodynamic and metabolic responses of patients with heart failure and mid-range ejection fraction. Eur. Heart J. Cardiovasc. Img 20 828–836. 10.1093/ehjci/jez014
    1. Shah S. J., Katz D. H., Selvaraj S., Burke M. A., Yancy C. W., Gheorghiade M., et al. (2015). Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation 131 269–279. 10.1161/CIRCULATIONAHA.114.010637
    1. Shah S. J., Kitzman D. W., Borlaug B. A., van Heerebeek L., Zile M. R., Kass D. A., et al. (2016). Phenotype-specific treatment of heart failure with preserved ejection fraction. Circulation 134 73–90. 10.1161/CIRCULATIONAHA.116.021884
    1. Shimiaie J., Sherez J., Aviram G., Megidish R., Viskin S., Halkin A., et al. (2015). Determinants of effort intolerance in patients with heart failure. J. Am Coll. Cardiol. Heart Fail 3 803–814. 10.1016/j.jchf.2015.05.010
    1. Suchy C., Massen L., Rognmo O., Van Craenenbroeck E. M., Beckers P., Kraigher-Krainer E., et al. (2014). Optimising exercise training in prevention and treatment of diastolic heart failure (OptimEx-CLIN): rationale and design of a prospective, randomised, controlled trial. Eur. J. Prev. Cardiol. 21 18–25. 10.1177/2047487314552764
    1. Tibshirani R., Walther G., Hastie T. (2001). Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc. Ser. B 63 411–423. 10.1111/1467-9868.00293
    1. Yancy C. W., Jessup M., Bozkurt B., Butler J., Casey D. E., Colvin M. M., et al. (2017). 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure. Circulation 136 e137–e161. 10.1161/CIR.0000000000000509

Source: PubMed

3
Subscribe