Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling

Ying Wang, Robyn Branicky, Alycia Noë, Siegfried Hekimi, Ying Wang, Robyn Branicky, Alycia Noë, Siegfried Hekimi

Abstract

Superoxide dismutases (SODs) are universal enzymes of organisms that live in the presence of oxygen. They catalyze the conversion of superoxide into oxygen and hydrogen peroxide. Superoxide anions are the intended product of dedicated signaling enzymes as well as the byproduct of several metabolic processes including mitochondrial respiration. Through their activity, SOD enzymes control the levels of a variety of reactive oxygen species (ROS) and reactive nitrogen species, thus both limiting the potential toxicity of these molecules and controlling broad aspects of cellular life that are regulated by their signaling functions. All aerobic organisms have multiple SOD proteins targeted to different cellular and subcellular locations, reflecting the slow diffusion and multiple sources of their substrate superoxide. This compartmentalization also points to the need for fine local control of ROS signaling and to the possibility for ROS to signal between compartments. In this review, we discuss studies in model organisms and humans, which reveal the dual roles of SOD enzymes in controlling damage and regulating signaling.

© 2018 Wang et al.

Figures

Figure 1.
Figure 1.
Reactions and transformations of the superoxide anion. SOD enzymes catalyze the dismutation of superoxide (O2•-), generating hydrogen peroxide (H2O2). The catalase (CAT), glutathione peroxidases (GPXs), and PRXs convert H2O2 into water. H2O2 can react with redox-active metals (e.g., iron) to generate the hydroxy radical (OH•) through the Fenton/Haber-Weiss reaction. The reaction between O2•- and nitric oxide (NO•) produces ONOO−, whose decomposition in turn gives rise to some highly oxidizing intermediates including NO2•, OH•, and CO3•- as well as, ultimately, stable NO3−. Therefore, raised O2•- levels can also decrease NO• bioavailability and generate ONOO− toxicity. O2•- by itself can reduce ferric iron (Fe3+) to ferrous iron (Fe2+) in iron–sulfur centers of proteins, leading to enzyme inactivation and concomitant loss of Fe2+ from the enzymes, which in turn fuels Fenton chemistry. The protonation of O2•- can form the more reactive hydroperoxyl radical (HO2•).
Figure 2.
Figure 2.
SOD-dependent ROS signaling in mammalian cells. In aerobic organisms, many processes produce O2•-, including cytosolic xanthine oxidase (OX), the cytochrome P450-monooxygenases (CYP) in the ER, the mitochondrial ETC, and NADPH oxidase (NOX). NOX is a membrane-bound enzyme complex that can be found in the plasma membrane as well as within intracellular membrane structures or vesicles (Meitzler et al., 2014). O2•- produced by the plasma membrane–bound NOX (e.g., NOX2) can act both intra- and extracellularly. H2O2 produced by SOD3 outside the cell can transverse into the cell interior in part through aquaporin channels to initiate intracellular signaling, whereas O2•- could influx through the chloride channel-3 (Fisher, 2009). The intracellular NOX complexes produce ROS in the lumen of a vesicular compartment, where ROS acts locally or from which it enters the cytosol (Brown and Griendling, 2009). H2O2 has been implicated in ROS signaling through oxidative modification of critical redox-sensitive cysteines in signaling proteins. The relatively well-recognized targets of ROS signaling include protein phosphatases (PTPs), nonreceptor protein tyrosine kinases (PTKs), protein kinase C (PKC), mitogen-activated protein kinases (MAPKs), and transcriptional factors (TFs). The signaling function of O2•- is yet largely uncharacterized. In C. elegans, it was shown that mitochondrial ROS act by signaling in part through the intrinsic apoptotic pathway, likely via H2O2, triggering processes that promote longevity (Yee et al., 2014). Compartmentalization of different forms of SOD provides an important mechanism for fine spatial control of ROS homeostasis and signaling, whose exact significance remains to be understood. CAT, catalase; GPX, glutathione peroxidase.

References

    1. Adams L., Franco M.C., and Estevez A.G.. 2015. Reactive nitrogen species in cellular signaling. Exp. Biol. Med. (Maywood). 240:711–717. 10.1177/1535370215581314
    1. Afanas’ev I. 2015. Mechanisms of superoxide signaling in epigenetic processes: relation to aging and cancer. Aging Dis. 6:216–227. 10.14336/AD.2014.0924
    1. Ahn S.G., and Thiele D.J.. 2003. Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress. Genes Dev. 17:516–528. 10.1101/gad.1044503
    1. Andersen P.M., and Al-Chalabi A.. 2011. Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat. Rev. Neurol. 7:603–615. 10.1038/nrneurol.2011.150
    1. Antonyuk S.V., Strange R.W., Marklund S.L., and Hasnain S.S.. 2009. The structure of human extracellular copper-zinc superoxide dismutase at 1.7 A resolution: insights into heparin and collagen binding. J. Mol. Biol. 388:310–326. 10.1016/j.jmb.2009.03.026
    1. Back P., Matthijssens F., Vlaeminck C., Braeckman B.P., and Vanfleteren J.R.. 2010. Effects of sod gene overexpression and deletion mutation on the expression profiles of reporter genes of major detoxification pathways in Caenorhabditis elegans. Exp. Gerontol. 45:603–610. 10.1016/j.exger.2010.01.014
    1. Banci L., Barbieri L., Bertini I., Luchinat E., Secci E., Zhao Y., and Aricescu A.R.. 2013. Atomic-resolution monitoring of protein maturation in live human cells by NMR. Nat. Chem. Biol. 9:297–299. 10.1038/nchembio.1202
    1. Bayne A.C., Mockett R.J., Orr W.C., and Sohal R.S.. 2005. Enhanced catabolism of mitochondrial superoxide/hydrogen peroxide and aging in transgenic Drosophila. Biochem. J. 391:277–284. 10.1042/BJ20041872
    1. Beckman J.S., and Koppenol W.H.. 1996. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am. J. Physiol. 271:C1424–C1437. 10.1152/ajpcell.1996.271.5.C1424
    1. Bedard K., and Krause K.H.. 2007. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 87:245–313. 10.1152/physrev.00044.2005
    1. Benov L. 2001. How superoxide radical damages the cell. Protoplasma. 217:33–36. 10.1007/BF01289410
    1. Bienert G.P., Schjoerring J.K., and Jahn T.P.. 2006. Membrane transport of hydrogen peroxide. Biochim. Biophys. Acta. 1758:994–1003. 10.1016/j.bbamem.2006.02.015
    1. Blackney M.J., Cox R., Shepherd D., and Parker J.D.. 2014. Cloning and expression analysis of Drosophila extracellular Cu Zn superoxide dismutase. Biosci. Rep. 34:e00164 10.1042/BSR20140133
    1. Brandes N., Schmitt S., and Jakob U.. 2009. Thiol-based redox switches in eukaryotic proteins. Antioxid. Redox Signal. 11:997–1014. 10.1089/ars.2008.2285
    1. Brown D.I., and Griendling K.K.. 2009. Nox proteins in signal transduction. Free Radic. Biol. Med. 47:1239–1253. 10.1016/j.freeradbiomed.2009.07.023
    1. Brown G.C., and Borutaite V.. 2007. Nitric oxide and mitochondrial respiration in the heart. Cardiovasc. Res. 75:283–290. 10.1016/j.cardiores.2007.03.022
    1. Call J.A., Donet J., Martin K.S., Sharma A.K., Chen X., Zhang J., Cai J., Galarreta C.A., Okutsu M., Du Z., et al. . 2017. Muscle-derived extracellular superoxide dismutase inhibits endothelial activation and protects against multiple organ dysfunction syndrome in mice. Free Radic. Biol. Med. 113:212–223. 10.1016/j.freeradbiomed.2017.09.029
    1. Campbell S.D., Hilliker A.J., and Phillips J.P.. 1986. Cytogenetic analysis of the cSOD microregion in Drosophila melanogaster. Genetics. 112:205–215.
    1. Cantley L.C. 2002. The phosphoinositide 3-kinase pathway. Science. 296:1655–1657. 10.1126/science.296.5573.1655
    1. Cardoso A.R., Chausse B., da Cunha F.M., Luévano-Martínez L.A., Marazzi T.B., Pessoa P.S., Queliconi B.B., and Kowaltowski A.J.. 2012. Mitochondrial compartmentalization of redox processes. Free Radic. Biol. Med. 52:2201–2208. 10.1016/j.freeradbiomed.2012.03.008
    1. Carlsson L.M., Jonsson J., Edlund T., and Marklund S.L.. 1995. Mice lacking extracellular superoxide dismutase are more sensitive to hyperoxia. Proc. Natl. Acad. Sci. USA. 92:6264–6268. 10.1073/pnas.92.14.6264
    1. Celotto A.M., Liu Z., Vandemark A.P., and Palladino M.J.. 2012. A novel Drosophila SOD2 mutant demonstrates a role for mitochondrial ROS in neurodevelopment and disease. Brain Behav. 2:424–434. 10.1002/brb3.73
    1. Chandel N.S., McClintock D.S., Feliciano C.E., Wood T.M., Melendez J.A., Rodriguez A.M., and Schumacker P.T.. 2000. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J. Biol. Chem. 275:25130–25138. 10.1074/jbc.M001914200
    1. Chang L.Y., Slot J.W., Geuze H.J., and Crapo J.D.. 1988. Molecular immunocytochemistry of the CuZn superoxide dismutase in rat hepatocytes. J. Cell Biol. 107:2169–2179. 10.1083/jcb.107.6.2169
    1. Chávez V., Mohri-Shiomi A., Maadani A., Vega L.A., and Garsin D.A.. 2007. Oxidative stress enzymes are required for DAF-16-mediated immunity due to generation of reactive oxygen species by Caenorhabditis elegans. Genetics. 176:1567–1577. 10.1534/genetics.107.072587
    1. Chen K., Kirber M.T., Xiao H., Yang Y., and Keaney J.F. Jr. 2008. Regulation of ROS signal transduction by NADPH oxidase 4 localization. J. Cell Biol. 181:1129–1139. 10.1083/jcb.200709049
    1. Chen Y., Azad M.B., and Gibson S.B.. 2009. Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ. 16:1040–1052. 10.1038/cdd.2009.49
    1. Chu Y., Piper R., Richardson S., Watanabe Y., Patel P., and Heistad D.D.. 2006. Endocytosis of extracellular superoxide dismutase into endothelial cells: role of the heparin-binding domain. Arterioscler. Thromb. Vasc. Biol. 26:1985–1990. 10.1161/01.ATV.0000234921.88489.5c
    1. Clancy D.J., Gems D., Harshman L.G., Oldham S., Stocker H., Hafen E., Leevers S.J., and Partridge L.. 2001. Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science. 292:104–106. 10.1126/science.1057991
    1. Connor K.M., Subbaram S., Regan K.J., Nelson K.K., Mazurkiewicz J.E., Bartholomew P.J., Aplin A.E., Tai Y.T., Aguirre-Ghiso J., Flores S.C., and Melendez J.A.. 2005. Mitochondrial H2O2 regulates the angiogenic phenotype via PTEN oxidation. J. Biol. Chem. 280:16916–16924. 10.1074/jbc.M410690200
    1. Connor K.M., Hempel N., Nelson K.K., Dabiri G., Gamarra A., Belarmino J., Van De Water L., Mian B.M., and Melendez J.A.. 2007. Manganese superoxide dismutase enhances the invasive and migratory activity of tumor cells. Cancer Res. 67:10260–10267. 10.1158/0008-5472.CAN-07-1204
    1. Corcoran A., and Cotter T.G.. 2013. Redox regulation of protein kinases. FEBS J. 280:1944–1965. 10.1111/febs.12224
    1. Cramer-Morales K., Heer C.D., Mapuskar K.A., and Domann F.E.. 2015. SOD2 targeted gene editing by CRISPR/Cas9 yields Human cells devoid of MnSOD. Free Radic. Biol. Med. 89:379–386. 10.1016/j.freeradbiomed.2015.07.017
    1. Crapo J.D., Oury T., Rabouille C., Slot J.W., and Chang L.Y.. 1992. Copper,zinc superoxide dismutase is primarily a cytosolic protein in human cells. Proc. Natl. Acad. Sci. USA. 89:10405–10409. 10.1073/pnas.89.21.10405
    1. Cremers C.M., and Jakob U.. 2013. Oxidant sensing by reversible disulfide bond formation. J. Biol. Chem. 288:26489–26496. 10.1074/jbc.R113.462929
    1. Cross A.R., and Segal A.W.. 2004. The NADPH oxidase of professional phagocytes--prototype of the NOX electron transport chain systems. Biochim. Biophys. Acta. 1657:1–22. 10.1016/j.bbabio.2004.03.008
    1. den Hertog J., Groen A., and van der Wijk T.. 2005. Redox regulation of protein-tyrosine phosphatases. Arch. Biochem. Biophys. 434:11–15. 10.1016/j.abb.2004.05.024
    1. Dhar S.K., and St Clair D.K.. 2012. Manganese superoxide dismutase regulation and cancer. Free Radic. Biol. Med. 52:2209–2222. 10.1016/j.freeradbiomed.2012.03.009
    1. Dhar S.K., Tangpong J., Chaiswing L., Oberley T.D., and St Clair D.K.. 2011. Manganese superoxide dismutase is a p53-regulated gene that switches cancers between early and advanced stages. Cancer Res. 71:6684–6695. 10.1158/0008-5472.CAN-11-1233
    1. Dingley S., Polyak E., Lightfoot R., Ostrovsky J., Rao M., Greco T., Ischiropoulos H., and Falk M.J.. 2010. Mitochondrial respiratory chain dysfunction variably increases oxidant stress in Caenorhabditis elegans. Mitochondrion. 10:125–136. 10.1016/j.mito.2009.11.003
    1. Doonan R., McElwee J.J., Matthijssens F., Walker G.A., Houthoofd K., Back P., Matscheski A., Vanfleteren J.R., and Gems D.. 2008. Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans. Genes Dev. 22:3236–3241. 10.1101/gad.504808
    1. Drazic A., and Winter J.. 2014. The physiological role of reversible methionine oxidation. Biochim. Biophys. Acta. 1844:1367–1382. 10.1016/j.bbapap.2014.01.001
    1. Dues D.J., Schaar C.E., Johnson B.K., Bowman M.J., Winn M.E., Senchuk M.M., and Van Raamsdonk J.M.. 2017. Uncoupling of oxidative stress resistance and lifespan in long-lived isp-1 mitochondrial mutants in Caenorhabditis elegans. Free Radic. Biol. Med. 108:362–373. 10.1016/j.freeradbiomed.2017.04.004
    1. Dukan S., and Nyström T.. 1999. Oxidative stress defense and deterioration of growth-arrested Escherichia coli cells. J. Biol. Chem. 274:26027–26032. 10.1074/jbc.274.37.26027
    1. Durieux J., Wolff S., and Dillin A.. 2011. The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell. 144:79–91. 10.1016/j.cell.2010.12.016
    1. Duttaroy A., Parkes T., Emtage P., Kirby K., Boulianne G.L., Wang X., Hilliker A.J., and Phillips J.P.. 1997. The manganese superoxide dismutase gene of Drosophila: structure, expression, and evidence for regulation by MAP kinase. DNA Cell Biol. 16:391–399. 10.1089/dna.1997.16.391
    1. Duttaroy A., Paul A., Kundu M., and Belton A.. 2003. A Sod2 null mutation confers severely reduced adult life span in Drosophila. Genetics. 165:2295–2299.
    1. Elchuri S., Oberley T.D., Qi W., Eisenstein R.S., Jackson Roberts L., Van Remmen H., Epstein C.J., and Huang T.T.. 2005. CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene. 24:367–380. 10.1038/sj.onc.1208207
    1. Erkut C., Vasilj A., Boland S., Habermann B., Shevchenko A., and Kurzchalia T.V.. 2013. Molecular strategies of the Caenorhabditis elegans dauer larva to survive extreme desiccation. PLoS One. 8:e82473 10.1371/journal.pone.0082473
    1. Fattman C.L., Schaefer L.M., and Oury T.D.. 2003. Extracellular superoxide dismutase in biology and medicine. Free Radic. Biol. Med. 35:236–256. 10.1016/S0891-5849(03)00275-2
    1. Favrin G., Bean D.M., Bilsland E., Boyer H., Fischer B.E., Russell S., Crowther D.C., Baylis H.A., Oliver S.G., and Giannakou M.E.. 2013. Identification of novel modifiers of Aβ toxicity by transcriptomic analysis in the fruitfly. Sci. Rep. 3:3512 10.1038/srep03512
    1. Feng J., Bussière F., and Hekimi S.. 2001. Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev. Cell. 1:633–644. 10.1016/S1534-5807(01)00071-5
    1. Finkel T. 2001. Reactive oxygen species and signal transduction. IUBMB Life. 52:3–6. 10.1080/15216540252774694
    1. Finkel T. 2011. Signal transduction by reactive oxygen species. J. Cell Biol. 194:7–15. 10.1083/jcb.201102095
    1. Fischer L.R., Li Y., Asress S.A., Jones D.P., and Glass J.D.. 2012. Absence of SOD1 leads to oxidative stress in peripheral nerve and causes a progressive distal motor axonopathy. Exp. Neurol. 233:163–171. 10.1016/j.expneurol.2011.09.020
    1. Fisher A.B. 2009. Redox signaling across cell membranes. Antioxid. Redox Signal. 11:1349–1356. 10.1089/ars.2008.2378
    1. Flood D.G., Reaume A.G., Gruner J.A., Hoffman E.K., Hirsch J.D., Lin Y.G., Dorfman K.S., and Scott R.W.. 1999. Hindlimb motor neurons require Cu/Zn superoxide dismutase for maintenance of neuromuscular junctions. Am. J. Pathol. 155:663–672. 10.1016/S0002-9440(10)65162-0
    1. Folz R.J., and Crapo J.D.. 1994. Extracellular superoxide dismutase (SOD3): tissue-specific expression, genomic characterization, and computer-assisted sequence analysis of the human EC SOD gene. Genomics. 22:162–171. 10.1006/geno.1994.1357
    1. Folz R.J., Guan J., Seldin M.F., Oury T.D., Enghild J.J., and Crapo J.D.. 1997. Mouse extracellular superoxide dismutase: primary structure, tissue-specific gene expression, chromosomal localization, and lung in situ hybridization. Am. J. Respir. Cell Mol. Biol. 17:393–403. 10.1165/ajrcmb.17.4.2826
    1. Forman H.J., Maiorino M., and Ursini F.. 2010. Signaling functions of reactive oxygen species. Biochemistry. 49:835–842. 10.1021/bi9020378
    1. Fridovich I. 1975. Superoxide dismutases. Annu. Rev. Biochem. 44:147–159. 10.1146/annurev.bi.44.070175.001051
    1. Fridovich I. 1997. Superoxide anion radical (O2-.), superoxide dismutases, and related matters. J. Biol. Chem. 272:18515–18517. 10.1074/jbc.272.30.18515
    1. Fujii M., Ishii N., Joguchi A., Yasuda K., and Ayusawa D.. 1998. A novel superoxide dismutase gene encoding membrane-bound and extracellular isoforms by alternative splicing in Caenorhabditis elegans. DNA Res. 5:25–30. 10.1093/dnares/5.1.25
    1. Fukai T., and Ushio-Fukai M.. 2011. Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid. Redox Signal. 15:1583–1606. 10.1089/ars.2011.3999
    1. Fukai T., Folz R.J., Landmesser U., and Harrison D.G.. 2002. Extracellular superoxide dismutase and cardiovascular disease. Cardiovasc. Res. 55:239–249. 10.1016/S0008-6363(02)00328-0
    1. Garratt M., Pichaud N., Glaros E.N., Kee A.J., and Brooks R.C.. 2014. Superoxide dismutase deficiency impairs olfactory sexual signaling and alters bioenergetic function in mice. Proc. Natl. Acad. Sci. USA. 111:8119–8124. 10.1073/pnas.1322282111
    1. Giannoni E., Buricchi F., Raugei G., Ramponi G., and Chiarugi P.. 2005. Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth. Mol. Cell. Biol. 25:6391–6403. 10.1128/MCB.25.15.6391-6403.2005
    1. Glasauer A., Sena L.A., Diebold L.P., Mazar A.P., and Chandel N.S.. 2014. Targeting SOD1 reduces experimental non–small-cell lung cancer. J. Clin. Invest. 124:117–128. 10.1172/JCI71714
    1. Gongora M.C., Qin Z., Laude K., Kim H.W., McCann L., Folz J.R., Dikalov S., Fukai T., and Harrison D.G.. 2006. Role of extracellular superoxide dismutase in hypertension. Hypertension. 48:473–481. 10.1161/01.HYP.0000235682.47673.ab
    1. Gongora M.C., Lob H.E., Landmesser U., Guzik T.J., Martin W.D., Ozumi K., Wall S.M., Wilson D.S., Murthy N., Gravanis M., et al. . 2008. Loss of extracellular superoxide dismutase leads to acute lung damage in the presence of ambient air: a potential mechanism underlying adult respiratory distress syndrome. Am. J. Pathol. 173:915–926. 10.2353/ajpath.2008.080119
    1. González-Cabo P., Bolinches-Amorós A., Cabello J., Ros S., Moreno S., Baylis H.A., Palau F., and Vázquez-Manrique R.P.. 2011. Disruption of the ATP-binding cassette B7 (ABTM-1/ABCB7) induces oxidative stress and premature cell death in Caenorhabditis elegans. J. Biol. Chem. 286:21304–21314. 10.1074/jbc.M110.211201
    1. Ha E.M., Oh C.T., Bae Y.S., and Lee W.J.. 2005. A direct role for dual oxidase in Drosophila gut immunity. Science. 310:847–850. 10.1126/science.1117311
    1. Harman D. 1956. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11:298–300. 10.1093/geronj/11.3.298
    1. Hayyan M., Hashim M.A., and AlNashef I.M.. 2016. Superoxide Ion: Generation and Chemical Implications. Chem. Rev. 116:3029–3085. 10.1021/acs.chemrev.5b00407
    1. Hempel N., Carrico P.M., and Melendez J.A.. 2011. Manganese superoxide dismutase (Sod2) and redox-control of signaling events that drive metastasis. Anticancer. Agents Med. Chem. 11:191–201. 10.2174/187152011795255911
    1. Henderson S.T., Bonafè M., and Johnson T.E.. 2006. daf-16 protects the nematode Caenorhabditis elegans during food deprivation. J. Gerontol. A Biol. Sci. Med. Sci. 61:444–460. 10.1093/gerona/61.5.444
    1. Hitomi Y., Watanabe S., Kizaki T., Sakurai T., Takemasa T., Haga S., Ookawara T., Suzuki K., and Ohno H.. 2008. Acute exercise increases expression of extracellular superoxide dismutase in skeletal muscle and the aorta. Redox Rep. 13:213–216. 10.1179/135100008X308894
    1. Holmström K.M., and Finkel T.. 2014. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat. Rev. Mol. Cell Biol. 15:411–421. 10.1038/nrm3801
    1. Honda Y., and Honda S.. 1999. The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB J. 13:1385–1393. 10.1096/fasebj.13.11.1385
    1. Honda Y., and Honda S.. 2001. Life span extensions associated with upregulation of gene expression of antioxidant enzymes in Caenorhabdms elegans; studies of mutation in the AGE-1, PI3 kinase homologue and short-term exposure to hyperoxia. J. Am. Aging Assoc. 24:179–186.
    1. Honda Y., Tanaka M., and Honda S.. 2008. Modulation of longevity and diapause by redox regulation mechanisms under the insulin-like signaling control in Caenorhabditis elegans. Exp. Gerontol. 43:520–529. 10.1016/j.exger.2008.02.009
    1. Horspool A.M., and Chang H.C.. 2017. Superoxide dismutase SOD-1 modulates C. elegans pathogen avoidance behavior. Sci. Rep. 7:45128 10.1038/srep45128
    1. Houtkooper R.H., Mouchiroud L., Ryu D., Moullan N., Katsyuba E., Knott G., Williams R.W., and Auwerx J.. 2013. Mitonuclear protein imbalance as a conserved longevity mechanism. Nature. 497:451–457. 10.1038/nature12188
    1. Hu D., Cao P., Thiels E., Chu C.T., Wu G.Y., Oury T.D., and Klann E.. 2007. Hippocampal long-term potentiation, memory, and longevity in mice that overexpress mitochondrial superoxide dismutase. Neurobiol. Learn. Mem. 87:372–384. 10.1016/j.nlm.2006.10.003
    1. Hunter T., Bannister W.H., and Hunter G.J.. 1997. Cloning, expression, and characterization of two manganese superoxide dismutases from Caenorhabditis elegans. J. Biol. Chem. 272:28652–28659. 10.1074/jbc.272.45.28652
    1. Hurt E.M., Thomas S.B., Peng B., and Farrar W.L.. 2007. Molecular consequences of SOD2 expression in epigenetically silenced pancreatic carcinoma cell lines. Br. J. Cancer. 97:1116–1123. 10.1038/sj.bjc.6604000
    1. Imamura Y., Noda S., Hashizume K., Shinoda K., Yamaguchi M., Uchiyama S., Shimizu T., Mizushima Y., Shirasawa T., and Tsubota K.. 2006. Drusen, choroidal neovascularization, and retinal pigment epithelium dysfunction in SOD1-deficient mice: a model of age-related macular degeneration. Proc. Natl. Acad. Sci. USA. 103:11282–11287. 10.1073/pnas.0602131103
    1. Imlay J.A. 2003. Pathways of oxidative damage. Annu. Rev. Microbiol. 57:395–418. 10.1146/annurev.micro.57.030502.090938
    1. Iuchi Y., Roy D., Okada F., Kibe N., Tsunoda S., Suzuki S., Takahashi M., Yokoyama H., Yoshitake J., Kondo S., and Fujii J.. 2010. Spontaneous skin damage and delayed wound healing in SOD1-deficient mice. Mol. Cell. Biochem. 341:181–194. 10.1007/s11010-010-0449-y
    1. Izuo N., Nojiri H., Uchiyama S., Noda Y., Kawakami S., Kojima S., Sasaki T., Shirasawa T., and Shimizu T.. 2015. Brain-Specific Superoxide Dismutase 2 Deficiency Causes Perinatal Death with Spongiform Encephalopathy in Mice. Oxid. Med. Cell. Longev. 2015:238914 10.1155/2015/238914
    1. Jang Y.C., Pérez V.I., Song W., Lustgarten M.S., Salmon A.B., Mele J., Qi W., Liu Y., Liang H., Chaudhuri A., et al. . 2009. Overexpression of Mn superoxide dismutase does not increase life span in mice. J. Gerontol. A Biol. Sci. Med. Sci. 64:1114–1125. 10.1093/gerona/glp100
    1. Jensen L.T., and Culotta V.C.. 2005. Activation of CuZn superoxide dismutases from Caenorhabditis elegans does not require the copper chaperone CCS. J. Biol. Chem. 280:41373–41379. 10.1074/jbc.M509142200
    1. Jones P.L., Kucera G., Gordon H., and Boss J.M.. 1995. Cloning and characterization of the murine manganous superoxide dismutase-encoding gene. Gene. 153:155–161. 10.1016/0378-1119(94)00666-G
    1. Juarez J.C., Manuia M., Burnett M.E., Betancourt O., Boivin B., Shaw D.E., Tonks N.K., Mazar A.P., and Doñate F.. 2008. Superoxide dismutase 1 (SOD1) is essential for H2O2-mediated oxidation and inactivation of phosphatases in growth factor signaling. Proc. Natl. Acad. Sci. USA. 105:7147–7152. 10.1073/pnas.0709451105
    1. Jung I., Kim T.Y., and Kim-Ha J.. 2011. Identification of Drosophila SOD3 and its protective role against phototoxic damage to cells. FEBS Lett. 585:1973–1978. 10.1016/j.febslet.2011.05.033
    1. Jung O., Marklund S.L., Geiger H., Pedrazzini T., Busse R., and Brandes R.P.. 2003. Extracellular superoxide dismutase is a major determinant of nitric oxide bioavailability: in vivo and ex vivo evidence from ecSOD-deficient mice. Circ. Res. 93:622–629. 10.1161/01.RES.0000092140.81594.A8
    1. Kabil H., Partridge L., and Harshman L.G.. 2007. Superoxide dismutase activities in long-lived Drosophila melanogaster females: chico1 genotypes and dietary dilution. Biogerontology. 8:201–208. 10.1007/s10522-006-9065-3
    1. Karlsson K., and Marklund S.L.. 1988. Extracellular superoxide dismutase in the vascular system of mammals. Biochem. J. 255:223–228.
    1. Kirby K., Hu J., Hilliker A.J., and Phillips J.P.. 2002. RNA interference-mediated silencing of Sod2 in Drosophila leads to early adult-onset mortality and elevated endogenous oxidative stress. Proc. Natl. Acad. Sci. USA. 99:16162–16167. 10.1073/pnas.252342899
    1. Kokoszka J.E., Coskun P., Esposito L.A., and Wallace D.C.. 2001. Increased mitochondrial oxidative stress in the Sod2 (+/-) mouse results in the age-related decline of mitochondrial function culminating in increased apoptosis. Proc. Natl. Acad. Sci. USA. 98:2278–2283. 10.1073/pnas.051627098
    1. Kuwahara H., Horie T., Ishikawa S., Tsuda C., Kawakami S., Noda Y., Kaneko T., Tahara S., Tachibana T., Okabe M., et al. . 2010. Oxidative stress in skeletal muscle causes severe disturbance of exercise activity without muscle atrophy. Free Radic. Biol. Med. 48:1252–1262. 10.1016/j.freeradbiomed.2010.02.011
    1. Landis G.N., and Tower J.. 2005. Superoxide dismutase evolution and life span regulation. Mech. Ageing Dev. 126:365–379. 10.1016/j.mad.2004.08.012
    1. Lapointe J., and Hekimi S.. 2008. Early mitochondrial dysfunction in long-lived Mclk1+/- mice. J. Biol. Chem. 283:26217–26227. 10.1074/jbc.M803287200
    1. Larsen P.L. 1993. Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA. 90:8905–8909. 10.1073/pnas.90.19.8905
    1. Lebovitz R.M., Zhang H., Vogel H., Cartwright J. Jr., Dionne L., Lu N., Huang S., and Matzuk M.M.. 1996. Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc. Natl. Acad. Sci. USA. 93:9782–9787. 10.1073/pnas.93.18.9782
    1. Lee S., Van Remmen H., and Csete M.. 2009. Sod2 overexpression preserves myoblast mitochondrial mass and function, but not muscle mass with aging. Aging Cell. 8:296–310. 10.1111/j.1474-9726.2009.00477.x
    1. Leslie N.R., Bennett D., Lindsay Y.E., Stewart H., Gray A., and Downes C.P.. 2003. Redox regulation of PI 3-kinase signalling via inactivation of PTEN. EMBO J. 22:5501–5510. 10.1093/emboj/cdg513
    1. Levanon D., Lieman-Hurwitz J., Dafni N., Wigderson M., Sherman L., Bernstein Y., Laver-Rudich Z., Danciger E., Stein O., and Groner Y.. 1985. Architecture and anatomy of the chromosomal locus in human chromosome 21 encoding the Cu/Zn superoxide dismutase. EMBO J. 4:77–84.
    1. Li L., Chen Y., and Gibson S.B.. 2013. Starvation-induced autophagy is regulated by mitochondrial reactive oxygen species leading to AMPK activation. Cell. Signal. 25:50–65. 10.1016/j.cellsig.2012.09.020
    1. Li Y., Huang T.T., Carlson E.J., Melov S., Ursell P.C., Olson J.L., Noble L.J., Yoshimura M.P., Berger C., Chan P.H., et al. . 1995. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat. Genet. 11:376–381. 10.1038/ng1295-376
    1. Liochev S.I., and Fridovich I.. 1999. Superoxide and iron: partners in crime. IUBMB Life. 48:157–161. 10.1080/713803492
    1. Lob H.E., Marvar P.J., Guzik T.J., Sharma S., McCann L.A., Weyand C., Gordon F.J., and Harrison D.G.. 2010. Induction of hypertension and peripheral inflammation by reduction of extracellular superoxide dismutase in the central nervous system. Hypertension. 55:277–283.
    1. Lob H.E., Vinh A., Li L., Blinder Y., Offermanns S., and Harrison D.G.. 2011. Role of vascular extracellular superoxide dismutase in hypertension. Hypertension. 58:232–239. 10.1161/HYPERTENSIONAHA.111.172718
    1. Marcus D.L., Strafaci J.A., and Freedman M.L.. 2006. Differential neuronal expression of manganese superoxide dismutase in Alzheimer’s disease. Med. Sci. Monit. 12:BR8–BR14.
    1. Marinho H.S., Real C., Cyrne L., Soares H., and Antunes F.. 2014. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol. 2:535–562. 10.1016/j.redox.2014.02.006
    1. Marino S.M., and Gladyshev V.N.. 2012. Analysis and functional prediction of reactive cysteine residues. J. Biol. Chem. 287:4419–4425. 10.1074/jbc.R111.275578
    1. Marklund S.L. 1984. Extracellular superoxide dismutase in human tissues and human cell lines. J. Clin. Invest. 74:1398–1403. 10.1172/JCI111550
    1. Matzuk M.M., Dionne L., Guo Q., Kumar T.R., and Lebovitz R.M.. 1998. Ovarian function in superoxide dismutase 1 and 2 knockout mice. Endocrinology. 139:4008–4011. 10.1210/endo.139.9.6289
    1. McCord J.M., and Fridovich I.. 1969. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244:6049–6055.
    1. Meitzler J.L., Antony S., Wu Y., Juhasz A., Liu H., Jiang G., Lu J., Roy K., and Doroshow J.H.. 2014. NADPH oxidases: a perspective on reactive oxygen species production in tumor biology. Antioxid. Redox Signal. 20:2873–2889. 10.1089/ars.2013.5603
    1. Meng J., Lv Z., Qiao X., Li X., Li Y., Zhang Y., and Chen C.. 2017. The decay of Redox-stress Response Capacity is a substantive characteristic of aging: Revising the redox theory of aging. Redox Biol. 11:365–374. 10.1016/j.redox.2016.12.026
    1. Miller A.F. 2012. Superoxide dismutases: ancient enzymes and new insights. FEBS Lett. 586:585–595. 10.1016/j.febslet.2011.10.048
    1. Miriyala S., Spasojevic I., Tovmasyan A., Salvemini D., Vujaskovic Z., St Clair D., and Batinic-Haberle I.. 2012. Manganese superoxide dismutase, MnSOD and its mimics. Biochim. Biophys. Acta. 1822:794–814. 10.1016/j.bbadis.2011.12.002
    1. Missirlis F., Hu J., Kirby K., Hilliker A.J., Rouault T.A., and Phillips J.P.. 2003. Compartment-specific protection of iron-sulfur proteins by superoxide dismutase. J. Biol. Chem. 278:47365–47369. 10.1074/jbc.M307700200
    1. Mitsuishi Y., Taguchi K., Kawatani Y., Shibata T., Nukiwa T., Aburatani H., Yamamoto M., and Motohashi H.. 2012. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell. 22:66–79. 10.1016/j.ccr.2012.05.016
    1. Mittler R., Vanderauwera S., Suzuki N., Miller G., Tognetti V.B., Vandepoele K., Gollery M., Shulaev V., and Van Breusegem F.. 2011. ROS signaling: the new wave? Trends Plant Sci. 16:300–309. 10.1016/j.tplants.2011.03.007
    1. Mockett R.J., Sohal B.H., and Sohal R.S.. 2010. Expression of multiple copies of mitochondrially targeted catalase or genomic Mn superoxide dismutase transgenes does not extend the life span of Drosophila melanogaster. Free Radic. Biol. Med. 49:2028–2031. 10.1016/j.freeradbiomed.2010.09.029
    1. Muller F.L., Song W., Liu Y., Chaudhuri A., Pieke-Dahl S., Strong R., Huang T.T., Epstein C.J., Roberts L.J. II, Csete M., et al. . 2006. Absence of CuZn superoxide dismutase leads to elevated oxidative stress and acceleration of age-dependent skeletal muscle atrophy. Free Radic. Biol. Med. 40:1993–2004. 10.1016/j.freeradbiomed.2006.01.036
    1. Münzel T., Gori T., Bruno R.M., and Taddei S.. 2010. Is oxidative stress a therapeutic target in cardiovascular disease? Eur. Heart J. 31:2741–2748. 10.1093/eurheartj/ehq396
    1. Murphy M.P. 2009. How mitochondria produce reactive oxygen species. Biochem. J. 417:1–13. 10.1042/BJ20081386
    1. Nakashima I., Kato M., Akhand A.A., Suzuki H., Takeda K., Hossain K., and Kawamoto Y.. 2002. Redox-linked signal transduction pathways for protein tyrosine kinase activation. Antioxid. Redox Signal. 4:517–531. 10.1089/15230860260196326
    1. Nojiri H., Shimizu T., Funakoshi M., Yamaguchi O., Zhou H., Kawakami S., Ohta Y., Sami M., Tachibana T., Ishikawa H., et al. . 2006. Oxidative stress causes heart failure with impaired mitochondrial respiration. J. Biol. Chem. 281:33789–33801. 10.1074/jbc.M602118200
    1. Oh S.I., Park J.K., and Park S.K.. 2015. Lifespan extension and increased resistance to environmental stressors by N-acetyl-l-cysteine in Caenorhabditis elegans. Clinics (São Paulo). 70:380–386. 10.6061/clinics/2015(05)13
    1. Okado-Matsumoto A., and Fridovich I.. 2001. Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu/Zn-SOD in mitochondria. J. Biol. Chem. 276:38388–38393. 10.1074/jbc.M105395200
    1. Orr W.C., and Sohal R.S.. 1994. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science. 263:1128–1130. 10.1126/science.8108730
    1. Orr W.C., Mockett R.J., Benes J.J., and Sohal R.S.. 2003. Effects of overexpression of copper-zinc and manganese superoxide dismutases, catalase, and thioredoxin reductase genes on longevity in Drosophila melanogaster. J. Biol. Chem. 278:26418–26422. 10.1074/jbc.M303095200
    1. Pacher P., Beckman J.S., and Liaudet L.. 2007. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 87:315–424. 10.1152/physrev.00029.2006
    1. Panieri E., and Santoro M.M.. 2016. ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death Dis. 7:e2253 10.1038/cddis.2016.105
    1. Parkes T.L., Elia A.J., Dickinson D., Hilliker A.J., Phillips J.P., and Boulianne G.L.. 1998. Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nat. Genet. 19:171–174. 10.1038/534
    1. Paulsen C.E., and Carroll K.S.. 2010. Orchestrating redox signaling networks through regulatory cysteine switches. ACS Chem. Biol. 5:47–62. 10.1021/cb900258z
    1. Paulsen C.E., and Carroll K.S.. 2013. Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem. Rev. 113:4633–4679. 10.1021/cr300163e
    1. Pelicano H., Xu R.H., Du M., Feng L., Sasaki R., Carew J.S., Hu Y., Ramdas L., Hu L., Keating M.J., et al. . 2006. Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism. J. Cell Biol. 175:913–923. 10.1083/jcb.200512100
    1. Phillips J.P., Campbell S.D., Michaud D., Charbonneau M., and Hilliker A.J.. 1989. Null mutation of copper/zinc superoxide dismutase in Drosophila confers hypersensitivity to paraquat and reduced longevity. Proc. Natl. Acad. Sci. USA. 86:2761–2765. 10.1073/pnas.86.8.2761
    1. Phillips J.P., Tainer J.A., Getzoff E.D., Boulianne G.L., Kirby K., and Hilliker A.J.. 1995. Subunit-destabilizing mutations in Drosophila copper/zinc superoxide dismutase: neuropathology and a model of dimer dysequilibrium. Proc. Natl. Acad. Sci. USA. 92:8574–8578. 10.1073/pnas.92.19.8574
    1. Pouyet L., and Carrier A.. 2010. Mutant mouse models of oxidative stress. Transgenic Res. 19:155–164. 10.1007/s11248-009-9308-6
    1. Rathor L., Akhoon B.A., Pandey S., Srivastava S., and Pandey R.. 2015. Folic acid supplementation at lower doses increases oxidative stress resistance and longevity in Caenorhabditis elegans. Age (Dordr.). 37:113 10.1007/s11357-015-9850-5
    1. Reczek C.R., and Chandel N.S.. 2015. ROS-dependent signal transduction. Curr. Opin. Cell Biol. 33:8–13. 10.1016/j.ceb.2014.09.010
    1. Reddi A.R., and Culotta V.C.. 2013. SOD1 integrates signals from oxygen and glucose to repress respiration. Cell. 152:224–235. 10.1016/j.cell.2012.11.046
    1. Rhee S.G. 2006. Cell signaling. H2O2, a necessary evil for cell signaling. Science. 312:1882–1883. 10.1126/science.1130481
    1. Ristow M. 2014. Unraveling the truth about antioxidants: mitohormesis explains ROS-induced health benefits. Nat. Med. 20:709–711. 10.1038/nm.3624
    1. Robberecht W., and Philips T.. 2013. The changing scene of amyotrophic lateral sclerosis. Nat. Rev. Neurosci. 14:248–264. 10.1038/nrn3430
    1. Robbins D., and Zhao Y.. 2014. Manganese superoxide dismutase in cancer prevention. Antioxid. Redox Signal. 20:1628–1645. 10.1089/ars.2013.5297
    1. Rogina B., and Helfand S.L.. 2000. Cu, Zn superoxide dismutase deficiency accelerates the time course of an age-related marker in Drosophila melanogaster. Biogerontology. 1:163–169. 10.1023/A:1010039813107
    1. Rosen D.R., Siddique T., Patterson D., Figlewicz D.A., Sapp P., Hentati A., Donaldson D., Goto J., O’Regan J.P., Deng H.X., et al. . 1993. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 362:59–62. 10.1038/362059a0
    1. Sabharwal S.S., and Schumacker P.T.. 2014. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nat. Rev. Cancer. 14:709–721. 10.1038/nrc3803
    1. Sánchez-Blanco A., and Kim S.K.. 2011. Variable pathogenicity determines individual lifespan in Caenorhabditis elegans. PLoS Genet. 7:e1002047 10.1371/journal.pgen.1002047
    1. Schaar C.E., Dues D.J., Spielbauer K.K., Machiela E., Cooper J.F., Senchuk M., Hekimi S., and Van Raamsdonk J.M.. 2015. Mitochondrial and cytoplasmic ROS have opposing effects on lifespan. PLoS Genet. 11:e1004972 10.1371/journal.pgen.1004972
    1. Schöneich C. 2008. Mechanisms of protein damage induced by cysteine thiyl radical formation. Chem. Res. Toxicol. 21:1175–1179. 10.1021/tx800005u
    1. Schöneich C. 2011. Cysteine residues as catalysts for covalent peptide and protein modification: a role for thiyl radicals? Biochem. Soc. Trans. 39:1254–1259. 10.1042/BST0391254
    1. Schrader M., and Fahimi H.D.. 2006. Peroxisomes and oxidative stress. Biochim. Biophys. Acta. 1763:1755–1766. 10.1016/j.bbamcr.2006.09.006
    1. Schulz T.J., Zarse K., Voigt A., Urban N., Birringer M., and Ristow M.. 2007. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab. 6:280–293. 10.1016/j.cmet.2007.08.011
    1. Schumacker P.T. 2006. Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell. 10:175–176. 10.1016/j.ccr.2006.08.015
    1. Semenza G.L. 2003. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer. 3:721–732. 10.1038/nrc1187
    1. Seto N.O., Hayashi S., and Tener G.M.. 1990. Overexpression of Cu-Zn superoxide dismutase in Drosophila does not affect life-span. Proc. Natl. Acad. Sci. USA. 87:4270–4274. 10.1073/pnas.87.11.4270
    1. Shi Y., Ivannikov M.V., Walsh M.E., Liu Y., Zhang Y., Jaramillo C.A., Macleod G.T., and Van Remmen H.. 2014. The lack of CuZnSOD leads to impaired neurotransmitter release, neuromuscular junction destabilization and reduced muscle strength in mice. PLoS One. 9:e100834 10.1371/journal.pone.0100834
    1. Shibata Y., Branicky R., Landaverde I.O., and Hekimi S.. 2003. Redox regulation of germline and vulval development in Caenorhabditis elegans. Science. 302:1779–1782. 10.1126/science.1087167
    1. Silva J.P., Shabalina I.G., Dufour E., Petrovic N., Backlund E.C., Hultenby K., Wibom R., Nedergaard J., Cannon B., and Larsson N.G.. 2005. SOD2 overexpression: enhanced mitochondrial tolerance but absence of effect on UCP activity. EMBO J. 24:4061–4070. 10.1038/sj.emboj.7600866
    1. Slot J.W., Geuze H.J., Freeman B.A., and Crapo J.D.. 1986. Intracellular localization of the copper-zinc and manganese superoxide dismutases in rat liver parenchymal cells. Lab. Invest. 55:363–371.
    1. Sohal R.S., and Weindruch R.. 1996. Oxidative stress, caloric restriction, and aging. Science. 273:59–63. 10.1126/science.273.5271.59
    1. Song S., Zhang X., Wu H., Han Y., Zhang J., Ma E., and Guo Y.. 2014. Molecular basis for antioxidant enzymes in mediating copper detoxification in the nematode Caenorhabditis elegans. PLoS One. 9:e107685 10.1371/journal.pone.0107685
    1. Stamler J.S., Singel D.J., and Loscalzo J.. 1992. Biochemistry of nitric oxide and its redox-activated forms. Science. 258:1898–1902. 10.1126/science.1281928
    1. Stöcker S., Van Laer K., Mijuskovic A., and Dick T.P.. 2018. The Conundrum of Hydrogen Peroxide Signaling and the Emerging Role of Peroxiredoxins as Redox Relay Hubs. Antioxid. Redox Signal. 28:558–573. 10.1089/ars.2017.7162
    1. Strålin P., Karlsson K., Johansson B.O., and Marklund S.L.. 1995. The interstitium of the human arterial wall contains very large amounts of extracellular superoxide dismutase. Arterioscler. Thromb. Vasc. Biol. 15:2032–2036. 10.1161/01.ATV.15.11.2032
    1. Suetomi K., Mereiter S., Mori C., Takanami T., and Higashitani A.. 2013. Caenorhabditis elegans ATR checkpoint kinase ATL-1 influences life span through mitochondrial maintenance. Mitochondrion. 13:729–735. 10.1016/j.mito.2013.02.004
    1. Sullivan L.B., and Chandel N.S.. 2014. Mitochondrial reactive oxygen species and cancer. Cancer Metab. 2:17 10.1186/2049-3002-2-17
    1. Sun J., and Tower J.. 1999. FLP recombinase-mediated induction of Cu/Zn-superoxide dismutase transgene expression can extend the life span of adult Drosophila melanogaster flies. Mol. Cell. Biol. 19:216–228. 10.1128/MCB.19.1.216
    1. Sun J., Folk D., Bradley T.J., and Tower J.. 2002. Induced overexpression of mitochondrial Mn-superoxide dismutase extends the life span of adult Drosophila melanogaster. Genetics. 161:661–672.
    1. Suthammarak W., Somerlot B.H., Opheim E., Sedensky M., and Morgan P.G.. 2013. Novel interactions between mitochondrial superoxide dismutases and the electron transport chain. Aging Cell. 12:1132–1140. 10.1111/acel.12144
    1. Szabó C., Ischiropoulos H., and Radi R.. 2007. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat. Rev. Drug Discov. 6:662–680. 10.1038/nrd2222
    1. Tatar M., Kopelman A., Epstein D., Tu M.P., Yin C.M., and Garofalo R.S.. 2001. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science. 292:107–110. 10.1126/science.1057987
    1. Tawe W.N., Eschbach M.L., Walter R.D., and Henkle-Dührsen K.. 1998. Identification of stress-responsive genes in Caenorhabditis elegans using RT-PCR differential display. Nucleic Acids Res. 26:1621–1627. 10.1093/nar/26.7.1621
    1. Taylor J.P., Brown R.H. Jr., and Cleveland D.W.. 2016. Decoding ALS: from genes to mechanism. Nature. 539:197–206. 10.1038/nature20413
    1. Terada L.S. 2006. Specificity in reactive oxidant signaling: think globally, act locally. J. Cell Biol. 174:615–623. 10.1083/jcb.200605036
    1. Tharmalingam S., Alhasawi A., Appanna V.P., Lemire J., and Appanna V.D.. 2017. Reactive nitrogen species (RNS)-resistant microbes: adaptation and medical implications. Biol. Chem. 398:1193–1208. 10.1515/hsz-2017-0152
    1. Tonks N.K. 2005. Redox redux: revisiting PTPs and the control of cell signaling. Cell. 121:667–670. 10.1016/j.cell.2005.05.016
    1. Tousoulis D., Kampoli A.M., Tentolouris C., Papageorgiou N., and Stefanadis C.. 2012. The role of nitric oxide on endothelial function. Curr. Vasc. Pharmacol. 10:4–18. 10.2174/157016112798829760
    1. Trachootham D., Lu W., Ogasawara M.A., Nilsa R.D., and Huang P.. 2008. Redox regulation of cell survival. Antioxid. Redox Signal. 10:1343–1374. 10.1089/ars.2007.1957
    1. Trujillo M., Alvarez B., and Radi R.. 2016. One- and two-electron oxidation of thiols: mechanisms, kinetics and biological fates. Free Radic. Res. 50:150–171. 10.3109/10715762.2015.1089988
    1. Tsunoda S., Kibe N., Kurahashi T., and Fujii J.. 2013. Differential responses of SOD1-deficient mouse embryonic fibroblasts to oxygen concentrations. Arch. Biochem. Biophys. 537:5–11. 10.1016/j.abb.2013.06.008
    1. Ushio-Fukai M. 2006. Localizing NADPH oxidase-derived ROS. Sci. STKE. 2006:re8.
    1. Van Raamsdonk J.M., and Hekimi S.. 2009. Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in Caenorhabditis elegans. PLoS Genet. 5:e1000361 10.1371/journal.pgen.1000361
    1. Van Raamsdonk J.M., and Hekimi S.. 2012. Superoxide dismutase is dispensable for normal animal lifespan. Proc. Natl. Acad. Sci. USA. 109:5785–5790. 10.1073/pnas.1116158109
    1. Van Remmen H., Williams M.D., Guo Z., Estlack L., Yang H., Carlson E.J., Epstein C.J., Huang T.T., and Richardson A.. 2001. Knockout mice heterozygous for Sod2 show alterations in cardiac mitochondrial function and apoptosis. Am. J. Physiol. Heart Circ. Physiol. 281:H1422–H1432. 10.1152/ajpheart.2001.281.3.H1422
    1. Van Remmen H., Ikeno Y., Hamilton M., Pahlavani M., Wolf N., Thorpe S.R., Alderson N.L., Baynes J.W., Epstein C.J., Huang T.T., et al. . 2003. Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol. Genomics. 16:29–37. 10.1152/physiolgenomics.00122.2003
    1. Wan X.S., Devalaraja M.N., and St Clair D.K.. 1994. Molecular structure and organization of the human manganese superoxide dismutase gene. DNA Cell Biol. 13:1127–1136. 10.1089/dna.1994.13.1127
    1. Wang Y., and Hekimi S.. 2015. Mitochondrial dysfunction and longevity in animals: Untangling the knot. Science. 350:1204–1207. 10.1126/science.aac4357
    1. Winterbourn C.C. 2008. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 4:278–286. 10.1038/nchembio.85
    1. Wolf M., Nunes F., Henkel A., Heinick A., and Paul R.J.. 2008. The MAP kinase JNK-1 of Caenorhabditis elegans: location, activation, and influences over temperature-dependent insulin-like signaling, stress responses, and fitness. J. Cell. Physiol. 214:721–729. 10.1002/jcp.21269
    1. Woodruff R.C., Phillips J.P., and Hilliker A.J.. 2004. Increased spontaneous DNA damage in Cu/Zn superoxide dismutase (SOD1) deficient Drosophila. Genome. 47:1029–1035. 10.1139/g04-083
    1. Wu J.Z., Huang J.H., Khanabdali R., Kalionis B., Xia S.J., and Cai W.J.. 2016. Pyrroloquinoline quinone enhances the resistance to oxidative stress and extends lifespan upon DAF-16 and SKN-1 activities in C. elegans. Exp. Gerontol. 80:43–50. 10.1016/j.exger.2016.04.008
    1. Yanase S., Yasuda K., and Ishii N.. 2002. Adaptive responses to oxidative damage in three mutants of Caenorhabditis elegans (age-1, mev-1 and daf-16) that affect life span. Mech. Ageing Dev. 123:1579–1587. 10.1016/S0047-6374(02)00093-3
    1. Yanase S., Onodera A., Tedesco P., Johnson T.E., and Ishii N.. 2009. SOD-1 deletions in Caenorhabditis elegans alter the localization of intracellular reactive oxygen species and show molecular compensation. J. Gerontol. A Biol. Sci. Med. Sci. 64:530–539. 10.1093/gerona/glp020
    1. Yang W., and Hekimi S.. 2010. A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS Biol. 8:e1000556 10.1371/journal.pbio.1000556
    1. Yang W., Li J., and Hekimi S.. 2007. A Measurable increase in oxidative damage due to reduction in superoxide detoxification fails to shorten the life span of long-lived mitochondrial mutants of Caenorhabditis elegans. Genetics. 177:2063–2074. 10.1534/genetics.107.080788
    1. Yee C., Yang W., and Hekimi S.. 2014. The intrinsic apoptosis pathway mediates the pro-longevity response to mitochondrial ROS in C. elegans. Cell. 157:897–909. 10.1016/j.cell.2014.02.055
    1. Yoshihara D., Fujiwara N., Kitanaka N., Kitanaka J., Sakiyama H., Eguchi H., Takemura M., and Suzuki K.. 2016. The absence of the SOD1 gene causes abnormal monoaminergic neurotransmission and motivational impairment-like behavior in mice. Free Radic. Res. 50:1245–1256. 10.1080/10715762.2016.1234048
    1. Zhang Y., Zhang H.M., Shi Y., Lustgarten M., Li Y., Qi W., Zhang B.X., and Van Remmen H.. 2010. Loss of manganese superoxide dismutase leads to abnormal growth and signal transduction in mouse embryonic fibroblasts. Free Radic. Biol. Med. 49:1255–1262. 10.1016/j.freeradbiomed.2010.07.006
    1. Zhang Y., Ikeno Y., Bokov A., Gelfond J., Jaramillo C., Zhang H.M., Liu Y., Qi W., Hubbard G., Richardson A., and Van Remmen H.. 2013. Dietary restriction attenuates the accelerated aging phenotype of Sod1(-/-) mice. Free Radic. Biol. Med. 60:300–306. 10.1016/j.freeradbiomed.2013.02.026
    1. Zhang Y., Unnikrishnan A., Deepa S.S., Liu Y., Li Y., Ikeno Y., Sosnowska D., Van Remmen H., and Richardson A.. 2017. A new role for oxidative stress in aging: The accelerated aging phenotype in Sod1-/- mice is correlated to increased cellular senescence. Redox Biol. 11:30–37. 10.1016/j.redox.2016.10.014
    1. Zhao H., Liu J., Pan S., Sun Y., Li Q., Li F., Ma L., and Guo Q.. 2013. SOD mRNA and MDA expression in rectus femoris muscle of rats with different eccentric exercise programs and time points. PLoS One. 8:e73634 10.1371/journal.pone.0073634
    1. Zhao Y., Vanhoutte P.M., and Leung S.W.. 2015. Vascular nitric oxide: Beyond eNOS. J. Pharmacol. Sci. 129:83–94. 10.1016/j.jphs.2015.09.002

Source: PubMed

3
Subscribe