The impact of school water, sanitation, and hygiene improvements on infectious disease using serum antibody detection

Anna N Chard, Victoria Trinies, Delynn M Moss, Howard H Chang, Seydou Doumbia, Patrick J Lammie, Matthew C Freeman, Anna N Chard, Victoria Trinies, Delynn M Moss, Howard H Chang, Seydou Doumbia, Patrick J Lammie, Matthew C Freeman

Abstract

Background: Evidence from recent studies assessing the impact of school water, sanitation and hygiene (WASH) interventions on child health has been mixed. Self-reports of disease are subject to bias, and few WASH impact evaluations employ objective health measures to assess reductions in disease and exposure to pathogens. We utilized antibody responses from dried blood spots (DBS) to measure the impact of a school WASH intervention on infectious disease among pupils in Mali.

Methodology/principal findings: We randomly selected 21 beneficiary primary schools and their 21 matched comparison schools participating in a matched-control trial of a comprehensive school-based WASH intervention in Mali. DBS were collected from 20 randomly selected pupils in each school (n = 807). We analyzed eluted IgG from the DBS using a Luminex multiplex bead assay to 28 antigens from 17 different pathogens. Factor analysis identified three distinct latent variables representing vector-transmitted disease (driven primarily by dengue), food/water-transmitted enteric disease (driven primarily by Escherichia coli and Vibrio cholerae), and person-to-person transmitted enteric disease (driven primarily by norovirus). Data were analyzed using a linear latent variable model. Antibody evidence of food/water-transmitted enteric disease (change in latent variable mean (β) = -0.24; 95% CI: -0.53, -0.13) and person-to-person transmitted enteric disease (β = -0.17; 95% CI: -0.42, -0.04) was lower among pupils attending beneficiary schools. There was no difference in antibody evidence of vector-transmitted disease (β = 0.11; 95% CI: -0.05, 0.33).

Conclusions/significance: Evidence of enteric disease was lower among pupils attending schools benefitting from school WASH improvements than students attending comparison schools. These findings support results from the parent study, which also found reduced incidence of self-reported diarrhea among pupils of beneficiary schools. DBS collection was feasible in this resource-poor field setting and provided objective evidence of disease at a low cost per antigen analyzed, making it an effective measurement tool for the WASH field.

Trial registration: The trial was registered at ClinicalTrials.gov (NCT01787058).

Conflict of interest statement

The authors have declared that no competing interests exist.

References

    1. Fewtrell L, Kaufmann RB, Kay D, Enanoria W, Haller L, Colford JM Jr., Water, sanitation, and hygiene interventions to reduce diarrhoea in less developed countries: a systematic review and meta-analysis. The Lancet infectious diseases. 2005;5(1):42–52. Epub 2004/12/29. doi: .
    1. Barry MA, Simon GG, Mistry N, Hotez PJ. Global trends in neglected tropical disease control and elimination: impact on child health. Archives of disease in childhood. 2013;98(8):635–41. doi: .
    1. Esrey SA, Habicht JP. Epidemiologic evidence for health benefits from improved water and sanitation in developing countries. Epidemiologic reviews. 1986;8:117–28. Epub 1986/01/01. .
    1. Bartram J, Cairncross S. Hygiene, sanitation, and water: forgotten foundations of health. PLoS medicine. 2010;7(11):e1000367 Epub 2010/11/19. doi: ; PubMed Central PMCID: PMC2976722.
    1. Freeman MC, Ogden S, Jacobson J, Abbott D, Addiss DG, Amnie AG, et al. Integration of water, sanitation, and hygiene for the prevention and control of neglected tropical diseases: a rationale for inter-sectoral collaboration. PLoS neglected tropical diseases. 2013;7(9):e2439 Epub 2013/10/03. doi: ; PubMed Central PMCID: PMC3784463.
    1. Bowen A, Ma H, Ou J, Billhimer W, Long T, Mintz E, et al. A cluster-randomized controlled trial evaluating the effect of a handwashing-promotion program in Chinese primary schools. The American journal of tropical medicine and hygiene. 2007;76(6):1166–73. .
    1. Caruso BA, Freeman MC, Garn JV, Dreibelbis R, Saboori S, Muga R, et al. Assessing the impact of a school-based latrine cleaning and handwashing program on pupil absence in Nyanza Province, Kenya: a cluster-randomized trial. Trop Med Int Health. 2014;19(10):1185–97. doi: ; PubMed Central PMCID: PMCPMC4876949.
    1. Freeman MC, Clasen T, Brooker SJ, Akoko DO, Rheingans R. The Impact of a School-Based Hygiene, Water Quality and Sanitation Intervention on Soil-Transmitted Helminth Reinfection: A Cluster-Randomized Trial. The American journal of tropical medicine and hygiene. 2013. Epub 2013/09/11. doi: .
    1. Freeman MC, Clasen T, Dreibelbis R, Saboori S, Greene LE, Brumback B, et al. The impact of a school-based water supply and treatment, hygiene, and sanitation programme on pupil diarrhoea: a cluster-randomized trial. Epidemiology and infection. 2013:1–12. Epub 2013/05/25. doi: .
    1. Freeman MC, Greene LE, Dreibelbis R, Saboori S, Muga R, Brumback B, et al. Assessing the impact of a school-based water treatment, hygiene and sanitation programme on pupil absence in Nyanza Province, Kenya: a cluster-randomized trial. Trop Med Int Health. 2012;17(3):380–91. doi: .
    1. Garn JV, Greene LE, Dreibelbis R, Saboori S, Rheingans RD, Freeman MC. A cluster-randomized trial assessing the impact of school water, sanitation, and hygiene improvements on pupil enrollment and gender parity in enrollment. J Water Sanit Hyg Dev. 2013;3(4). doi: ; PubMed Central PMCID: PMCPMC3876875.
    1. Rosen L, Manor O, Engelhard D, Brody D, Rosen B, Peleg H, et al. Can a handwashing intervention make a difference? Results from a randomized controlled trial in Jerusalem preschools. Prev Med. 2006;42(1):27–32. doi: .
    1. Garn JV, Brumback BA, Drews-Botsch CD, Lash TL, Kramer MR, Freeman MC. Estimating the Effect of School Water, Sanitation, and Hygiene Improvements on Pupil Health Outcomes. Epidemiology. 2016;27(5):752–60. doi: ; PubMed Central PMCID: PMCPMC4969057.
    1. Trinies V, Garn JV, Chang HH, Freeman MC. The Impact of a School-Based Water, Sanitation, and Hygiene Program on Absenteeism, Diarrhea, and Respiratory Infection: A Matched-Control Trial in Mali. The American journal of tropical medicine and hygiene. 2016;94(6):1418–25. doi: ; PubMed Central PMCID: PMCPMC4889767.
    1. Greene LE, Freeman MC, Akoko D, Saboori S, Moe C, Rheingans R. Impact of a school-based hygiene promotion and sanitation intervention on pupil hand contamination in Western Kenya: a cluster randomized trial. The American journal of tropical medicine and hygiene. 2012;87(3):385–93. doi: ; PubMed Central PMCID: PMCPMC3435337.
    1. Talaat M, Afifi S, Dueger E, El-Ashry N, Marfin A, Kandeel A, et al. Effects of hand hygiene campaigns on incidence of laboratory-confirmed influenza and absenteeism in schoolchildren, Cairo, Egypt. Emerg Infect Dis. 2011;17(4):619–25. doi: ; PubMed Central PMCID: PMCPMC3377412.
    1. Garn JV, Trinies V, Toubkiss J, Freeman MC. The Role of Adherence on the Impact of a School-Based Water, Sanitation, and Hygiene Intervention in Mali. The American journal of tropical medicine and hygiene. 2017;96(4):984–93. doi: ; PubMed Central PMCID: PMC5392652.
    1. Blum D, Feachem RG. Measuring the impact of water supply and sanitation investments on diarrhoeal diseases: problems of methodology. International journal of epidemiology. 1983;12(3):357–65. Epub 1983/09/01. .
    1. Pacheco GD, Christen A, Arnold B, Hattendorf J, Colford JM Jr., Smith TA, et al. Reporting diarrhoea through a vernacular term in Quechua-speaking settings of rural Bolivia. J Health Popul Nutr. 2011;29(6):552–9. ; PubMed Central PMCID: PMCPMC3259717.
    1. Baqui AH, Black RE, Yunus M, Hoque AR, Chowdhury HR, Sack RB. Methodological issues in diarrhoeal diseases epidemiology: definition of diarrhoeal episodes. International journal of epidemiology. 1991;20(4):1057–63. Epub 1991/12/01. .
    1. Schmidt WP, Arnold BF, Boisson S, Genser B, Luby SP, Barreto ML, et al. Epidemiological methods in diarrhoea studies—an update. International journal of epidemiology. 2011;40(6):1678–92. doi: ; PubMed Central PMCID: PMC3235024.
    1. Lammie P, Solomon AW, Secor WE, Peeling RW. Diagnostic Needs for NTD Programs. Washington, D.C.: Institute of Medicine, 2011.
    1. Solomon AW, Engels D, Bailey RL, Blake IM, Brooker S, Chen JX, et al. A diagnostics platform for the integrated mapping, monitoring, and surveillance of neglected tropical diseases: rationale and target product profiles. PLoS neglected tropical diseases. 2012;6(7):e1746 Epub 2012/08/04. doi: ; PubMed Central PMCID: PMC3409112.
    1. Ronald Bellisarioa RJC, Kenneth A. Passa. Simultaneous measurement of antibodies to three HIV-1 antigens in newborn dried blood-spot specimens using a multiplexed microsphere-based immunoassay. Early Human Development. 2001;64:21–5.
    1. Moss DM, Chard AN, Trinies V, Doumbia S, Freeman MC, Lammie PJ. Serological Responses to Filarial Antigens in Malian Children Attending Elementary Schools. The American journal of tropical medicine and hygiene. 2016. doi: .
    1. Moss DM, Priest JW, Hamlin K, Derado G, Herbein J, Petri WA Jr., et al. Longitudinal evaluation of enteric protozoa in Haitian children by stool exam and multiplex serologic assay. The American journal of tropical medicine and hygiene. 2014;90(4):653–60. doi: ; PubMed Central PMCID: PMC3973509.
    1. Rogier E, Moss DM, Chard AN, Trinies V, Doumbia S, Freeman MC, et al. Evaluation of Immunoglobulin G Responses to Plasmodium falciparum and Plasmodium vivax in Malian School Children Using Multiplex Bead Assay. The American journal of tropical medicine and hygiene. 2016. doi: .
    1. Fulton RJ, McDade RL, Smith PL, Kienker LJ, Kettman JR Jr. Advanced multiplexed analysis with the FlowMetrix system. Clinical chemistry. 1997;43(9):1749–56. .
    1. Lammie PJ, Moss DM, Brook Goodhew E, Hamlin K, Krolewiecki A, West SK, et al. Development of a new platform for neglected tropical disease surveillance. International journal for parasitology. 2012;42(9):797–800. Epub 2012/08/01. doi: .
    1. Chegou NN, Detjen AK, Thiart L, Walters E, Mandalakas AM, Hesseling AC, et al. Utility of host markers detected in Quantiferon supernatants for the diagnosis of tuberculosis in children in a high-burden setting. PLoS One. 2013;8(5):e64226 doi: ; PubMed Central PMCID: PMCPMC3655018.
    1. Moss DM, Priest JW, Boyd A, Weinkopff T, Kucerova Z, Beach MJ, et al. Multiplex bead assay for serum samples from children in Haiti enrolled in a drug study for the treatment of lymphatic filariasis. The American journal of tropical medicine and hygiene. 2011;85(2):229–37. doi: ; PubMed Central PMCID: PMCPMC3144818.
    1. Poirier MJ, Moss DM, Feeser KR, Streit TG, Chang GJ, Whitney M, et al. Measuring Haitian children's exposure to chikungunya, dengue and malaria. Bulletin of the World Health Organization. 2016;94(11):817–25A. doi: ; PubMed Central PMCID: PMC5096354.
    1. Priest JW, Moss DM, Visvesvara GS, Jones CC, Li A, Isaac-Renton JL. Multiplex assay detection of immunoglobulin G antibodies that recognize Giardia intestinalis and Cryptosporidium parvum antigens. Clin Vaccine Immunol. 2010;17(11):1695–707. doi: ; PubMed Central PMCID: PMCPMC2976096.
    1. Zambrano LD, Priest JW, Ivan E, Rusine J, Nagel C, Kirby M, et al. Use of Serologic Responses against Enteropathogens to Assess the Impact of a Point-of-Use Water Filter: A Randomized Controlled Trial in Western Province, Rwanda. The American journal of tropical medicine and hygiene. 2017. doi: .
    1. McDade TW, Williams S, Snodgrass JJ. What a drop can do: dried blood spots as a minimally invasive method for integrating biomarkers into population-based research. Demography. 2007;44(4):899–925. .
    1. Mei JV, Alexander JR, Adam BW, Hannon WH. Use of filter paper for the collection and analysis of human whole blood specimens. The Journal of nutrition. 2001;131(5):1631S–6S. doi: .
    1. WHO/UNICEF Joint Monitoring Programme (JMP) for Water Supply and Sanitation. Drinking Water [cited 13 March 2018]. Available from: .
    1. Comrey AL, Lee HB. A First Course in Factor Analysis: Taylor & Francis; 2013.
    1. Cattell R. The Scientific Use of Factor Analysis in Behavioral and Life Sciences: Springer US; 2012.
    1. Loehlin JC. Latent Variable Models: An Introduction to Factor, Path, and Structural Equation Analysis: Taylor & Francis; 2004.
    1. Kaiser HF. The Application of Electronic Computers to Factor Analysis. Educational and Psychological Measurement. 1960;20(1):141–51. doi:
    1. Teixeira-Pinto A, Siddique J, Gibbons R, Normand SL. Statistical Approaches to Modeling Multiple Outcomes In Psychiatric Studies. Psychiatr Ann. 2009;39(7):729–35. doi: ; PubMed Central PMCID: PMCPMC2798811.
    1. Woodard DB, Love TM, Thurston SW, Ruppert D, Sathyanarayana S, Swan SH. Latent factor regression models for grouped outcomes. Biometrics. 2013;69(3):785–94. doi: ; PubMed Central PMCID: PMCPMC4171058.
    1. Rabe-Hesketh S, Skrondal A, Pickles A. Generalized multilevel structural equation modeling. Psychometrika. 2004;69(2):167–90. doi:
    1. Heymann DL. Control of Communicable Diseases Manual: American Public Health Association; 2014.
    1. Hunter PR. Drinking water and diarrhoeal disease due to Escherichia coli. Journal of water and health. 2003;1(2):65–72. .
    1. Kroneman A, Verhoef L, Harris J, Vennema H, Duizer E, van Duynhoven Y, et al. Analysis of integrated virological and epidemiological reports of norovirus outbreaks collected within the Foodborne Viruses in Europe network from 1 July 2001 to 30 June 2006. Journal of clinical microbiology. 2008;46(9):2959–65. doi: ; PubMed Central PMCID: PMC2546741.
    1. Siebenga JJ, Vennema H, Duizer E, Koopmans MP. Gastroenteritis caused by norovirus GGII.4, The Netherlands, 1994–2005. Emerg Infect Dis. 2007;13(1):144–6. doi: ; PubMed Central PMCID: PMC2913659.
    1. Lopman BA, Adak GK, Reacher MH, Brown DW. Two epidemiologic patterns of norovirus outbreaks: surveillance in England and wales, 1992–2000. Emerg Infect Dis. 2003;9(1):71–7. doi: ; PubMed Central PMCID: PMC2873766.
    1. World Health Organization. Dengue and severe dengue 2017 [cited 13 March 18]. Available from: .
    1. Erlanger TE, Keiser J, Utzinger J. Effect of dengue vector control interventions on entomological parameters in developing countries: a systematic review and meta-analysis. Med Vet Entomol. 2008;22(3):203–21. Epub 2008/09/26. doi: .
    1. Achee NL, Gould F, Perkins TA, Reiner RC Jr., Morrison AC, Ritchie SA, et al. A critical assessment of vector control for dengue prevention. PLoS neglected tropical diseases. 2015;9(5):e0003655 Epub 2015/05/08. doi: ; PubMed Central PMCID: PMCPMC4423954.
    1. Moss DM, Handali S, Chard AN, Trinies V, Bullard S, Wiegand RE, et al. Detection of Immunoglobulin G Antibodies to Taenia solium Cysticercosis Antigen Glutathione-S-Transferase-rT24H in Malian Children Using Multiplex Bead Assay. The American journal of tropical medicine and hygiene. 2018. doi: .
    1. Taylor DN, Perlman DM, Echeverria PD, Lexomboon U, Blaser MJ. Campylobacter immunity and quantitative excretion rates in Thai children. The Journal of infectious diseases. 1993;168(3):754–8. .
    1. MacLennan CA, Gondwe EN, Msefula CL, Kingsley RA, Thomson NR, White SA, et al. The neglected role of antibody in protection against bacteremia caused by nontyphoidal strains of Salmonella in African children. The Journal of clinical investigation. 2008;118(4):1553–62. doi: ; PubMed Central PMCID: PMC2268878.
    1. Sponseller JK, Griffiths JK, Tzipori S. The evolution of respiratory Cryptosporidiosis: evidence for transmission by inhalation. Clinical microbiology reviews. 2014;27(3):575–86. doi: ; PubMed Central PMCID: PMC4135895.
    1. Mor SM, Tumwine JK, Ndeezi G, Srinivasan MG, Kaddu-Mulindwa DH, Tzipori S, et al. Respiratory cryptosporidiosis in HIV-seronegative children in Uganda: potential for respiratory transmission. Clin Infect Dis. 2010;50(10):1366–72. doi: ; PubMed Central PMCID: PMCPMC2856758.
    1. Esrey SA, Potash JB, Roberts L, Shiff C. Effects of improved water supply and sanitation on ascariasis, diarrhoea, dracunculiasis, hookworm infection, schistosomiasis, and trachoma. Bulletin of the World Health Organization. 1991;69(5):609–21. ; PubMed Central PMCID: PMC2393264
    1. Stocks ME, Ogden S, Haddad D, Addiss DG, McGuire C, Freeman MC. Effect of water, sanitation, and hygiene on the prevention of trachoma: a systematic review and meta-analysis. PLoS medicine. 2014;11(2):e1001605 doi: ; PubMed Central PMCID: PMCPMC3934994.

Source: PubMed

3
Subscribe