The Relationship between Frontotemporal Effective Connectivity during Picture Naming, Behavior, and Preserved Cortical Tissue in Chronic Aphasia

Erin L Meier, Kushal J Kapse, Swathi Kiran, Erin L Meier, Kushal J Kapse, Swathi Kiran

Abstract

While several studies of task-based effective connectivity of normal language processing exist, little is known about the functional reorganization of language networks in patients with stroke-induced chronic aphasia. During oral picture naming, activation in neurologically intact individuals is found in "classic" language regions involved with retrieval of lexical concepts [e.g., left middle temporal gyrus (LMTG)], word form encoding [e.g., left posterior superior temporal gyrus, (LpSTG)], and controlled retrieval of semantic and phonological information [e.g., left inferior frontal gyrus (LIFG)] as well as domain-general regions within the multiple demands network [e.g., left middle frontal gyrus (LMFG)]. After stroke, lesions to specific parts of the left hemisphere language network force reorganization of this system. While individuals with aphasia have been found to recruit similar regions for language tasks as healthy controls, the relationship between the dynamic functioning of the language network and individual differences in underlying neural structure and behavioral performance is still unknown. Therefore, in the present study, we used dynamic causal modeling (DCM) to investigate differences between individuals with aphasia and healthy controls in terms of task-induced regional interactions between three regions (i.e., LIFG, LMFG, and LMTG) vital for picture naming. The DCM model space was organized according to exogenous input to these regions and partitioned into separate families. At the model level, random effects family wise Bayesian Model Selection revealed that models with driving input to LIFG best fit the control data whereas models with driving input to LMFG best fit the patient data. At the parameter level, a significant between-group difference in the connection strength from LMTG to LIFG was seen. Within the patient group, several significant relationships between network connectivity parameters, spared cortical tissue, and behavior were observed. Overall, this study provides some preliminary findings regarding how neural networks for language reorganize for individuals with aphasia and how brain connectivity relates to underlying structural integrity and task performance.

Keywords: aphasia; behavioral performance; cortical damage; dynamic causal modeling; effective connectivity; fMRI; oral picture naming.

Figures

FIGURE 1
FIGURE 1
Schematic of the fMRI picture naming task.
FIGURE 2
FIGURE 2
Lesion overlap of all thirteen PWA included in the DCM analysis.
FIGURE 3
FIGURE 3
Overview of the sequence of (A) fMRI and (B) DCM methods.
FIGURE 4
FIGURE 4
DCM model space. Full, bidirectional endogenous connections between all regions were modeled in DCM-A. For each model, driving input to only one region was modeled in DCM-C. All possible combinations of uni- and bidirectional modulations were modeled across the model space; for each model, the input region modulated at least one other region in DCM-B. The full model space for all 24 models in Family #1 is schematized in the figure above (1). Family #2 included models with the same modulatory connections as Family #1 with three additional models (2) and excluding models #1, #4, and #7 due to lack of modulation from LMFG to the other two regions. Similarly, Family #3 included models with the same modulatory connections as Family 1 with three additional models (3) and excluding models #9, #10, and #11 due to lack of modulation from LMTG to the other two regions.
FIGURE 5
FIGURE 5
Whole brain activation. (A) Results of the one-sample t-test in PWA at uncorrected (t = 3.05, p < 0.005) for pictures > scrambled pictures. (B) Results of the one-sample t-test in controls at uncorrected (t = 3.25, p < 0.005) for pictures > scrambled pictures. (C) Overlap of the 13 individual PWA activation maps at uncorrected (p < 0.001), cluster size of 3 voxels for picturesscrambled pictures. (D) Overlap of the 10 individual control activation maps at uncorrected (p < 0.001), cluster size of 5 voxels picturesscrambled pictures.
FIGURE 6
FIGURE 6
Family wise BMS. (A) Group-level family wise BMS results. (B) Single-subject family wise BMS for the PWA.
FIGURE 7
FIGURE 7
Correlations between percentage of spared tissue and strength of the connections (i.e., Ep.B values in Hz). (A) For family #1, significant correlations were found between the connection strength of LMFG → LIFG and the percentage of spared tissue in LIFG (shown on the left) and LMFG (shown on the right). (B) For family #2, a significant correlation was found between the connection strength of LMTG → LIFG and the amount of spared tissue in LMTG. (C) For family #3, significant correlations were found between the connection strength of LMFG → LMTG and percentage spared tissue in LMFG as well as the connection LMTG → LMFG and the amount of spared tissue in LMTG.
FIGURE 8
FIGURE 8
Correlations between percentage of spared tissue and strength of task-induced perturbation to specific regions (i.e., Ep.C values in Hz). (A) For family #1, an association that approached significance was found between strength of driving input of LIFG and amount of spared tissue in LIFG. (B) For family #3, a trending association between driving input strength of LMTG and the amount of spared tissue in LMTG.
FIGURE 9
FIGURE 9
Correlations between behavioral performance and strength of the connections (i.e., Ep.B values in Hz). (A) For family #1, significant correlations were found between the connection strength of LMFG → LMTG and behavioral accuracy on the naming screener (shown on the left) and the fMRI task (shown on the right). (B) For family #2, a significant correlation was found between the connection strength of LIFG → LMTG and fMRI task accuracy. (C) For family #3, a significant correlation was found between the connection strength of LMFG → LMTG and the average naming screener accuracy.
FIGURE 10
FIGURE 10
Correlations between behavioral accuracy and strength of task-induced perturbation to specific regions (i.e., Ep.C values in Hz). (A) For family #1, significant associations were found between strength of task-induced perturbation to LIFG and accuracy on the naming screener (shown on the left) and on the fMRI task (shown on the right). (B) For family #2, a significant relationship was seen between strength of driving input to LMFG and fMRI task accuracy.

References

    1. Abel S., Huber W., Weiller C., Amunts K., Eickhoff S. B., Heim S. (2011). The influence of handedness on hemispheric interaction during word production: insights from effective connectivity analysis. Brain Connect. 1 219–231. 10.1089/brain.2011.0024
    1. Abutalebi J., Della Rosa P. A., Tettamanti M., Green D. W., Cappa S. F. (2009). Bilingual aphasia and language control: a follow-up fMRI and intrinsic connectivity study. Brain Lang. 109 141–156. 10.1016/j.bandl.2009.03.003
    1. Allen P., Mechelli A., Stephan K. E., Day F., Dalton J., Williams S., et al. (2008). Fronto-temporal interactions during overt verbal initiation and suppression. J. Cogn. Neurosci. 20 1656–1669. 10.1162/jocn.2008.20107
    1. Badre D., Poldrack R. A., Paré-Blagoev E. J., Insler R. Z., Wagner A. D. (2005). Dissociable controlled retrieval and generalized selection mechanisms in ventrolateral prefrontal cortex. Neuron 47 907–918. 10.1016/j.neuron.2005.07.023
    1. Binder J. R., Desai R. H. (2011). The neurobiology of semantic memory. Trends Cogn. Sci. 15 527–536. 10.1016/j.tics.2011.10.001
    1. Binder J. R., Desai R. H., Graves W. W., Conant L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb. Cortex 19 2767–2796. 10.1093/cercor/bhp055
    1. Binney R. J., Embleton K. V., Jefferies E., Parker G. J., Ralph M. A. (2010). The ventral and inferolateral aspects of the anterior temporal lobe are crucial in semantic memory: evidence from a novel direct comparison of distortion-corrected fMRI, rTMS, and semantic dementia. Cereb. Cortex 20 2728–2738. 10.1093/cercor/bhq019
    1. Binney R. J., Parker G. J., Ralph M. A. L. (2012). Convergent connectivity and graded specialization in the rostral human temporal lobe as revealed by diffusion-weighted imaging probabilistic tractography. J. Cogn. Neurosci. 24 1998–2014. 10.1162/jocn_a_00263
    1. Birn R. M., Cox R. W., Bandettini P. A. (2004). Experimental designs and processing strategies for fMRI studies involving overt verbal responses. Neuroimage 23 1046–1058. 10.1016/j.neuroimage.2004.07.039
    1. Bokde A. L., Tagamets M. A., Friedman R. B., Horwitz B. (2001). Functional interactions of the inferior frontal cortex during the processing of words and word-like stimuli. Neuron 30 609–617. 10.1016/S0896-6273(01)00288-4
    1. Bonilha L., Rorden C., Fridriksson J. (2014). Assessing the clinical effect of residual cortical disconnection after ischemic strokes. Stroke 45 988–993. 10.1161/STROKEAHA.113.004137
    1. Brett M., Johnsrude I. S., Owen A. M. (2002). The problem of functional localization in the human brain. Nat. Rev. Neurosci. 3 243–249. 10.1038/nrn756
    1. Brett M., Leff A. P., Rorden C., Ashburner J. (2001). Spatial normalization of brain images with focal lesions using cost function masking. Neuroimage 14 486–500. 10.1006/nimg.2001.0845
    1. Cappa S. F. (2011). The neural basis of aphasia rehabilitation: evidence from neuroimaging and neurostimulation. Neuropsychol. Rehabil. 21 742–754. 10.1080/09602011.2011.614724
    1. Catani M., Howard R. J., Pajevic S., Jones D. K. (2002). Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 17 77–94. 10.1006/nimg.2002.1136
    1. Catani M., Jones D. K., Ffyche D. H. (2005). Perisylvian language networks of the human brain. Ann. Neurol. 57 8–16. 10.1002/ana.20319
    1. Catani M., Mesulam M. (2008). The arcuate fasciculus and the disconnection theme in language and aphasia: history and current state. Cortex 44 953–961. 10.1016/j.cortex.2008.04.002
    1. Chu Y., Lin F., Chou Y., Tsai K. W., Kuo W., Jääskeläinen I. P. (2013). Effective cerebral connectivity during silent speech reading revealed by functional magnetic resonance imaging. PLoS ONE 8:e80265 10.1371/journal.pone.0080265
    1. Cloutman L. L., Lambon Ralph M. A. (2012). Connectivity-based structural and functional parcellation of the human cortex using diffusion imaging and tractography. Front. Neuroanat. 6:34 10.3389/fnana.2012.00034
    1. Collette F., Van der Linden M., Delfiore G., Degueldre C., Luxen A., Salmon E. (2001). The functional anatomy of inhibition processes investigated with the hayling task. Neuroimage 14 258–267. 10.1006/nimg.2001.0846
    1. Coltheart M. (1981). The MRC psycholinguistic database. Q. J. Exp. Psychol. 33 497–505. 10.1080/14640748108400805
    1. Corbett F., Jefferies E., Ehsan S., Lambon Ralph M. A. (2009a). Different impairments of semantic cognition in semantic dementia and semantic aphasia: evidence from the non-verbal domain. Brain 132(Pt 9), 2593–2608. 10.1093/brain/awp146
    1. Corbett F., Jefferies E., Ralph M. A. L. (2009b). Exploring multimodal semantic control impairments in semantic aphasia: evidence from naturalistic object use. Neuropsychologia 47 2721–2731. 10.1016/j.neuropsychologia.2009.05.020
    1. Crosson B., McGregor K., Gopinath K. S., Conway T. W., Benjamin M., Chang Y., et al. (2007). Functional MRI of language in aphasia: a review of the literature and the methodological challenges. Neuropsychol. Rev. 17 157–177. 10.1007/s11065-007-9024-z
    1. de Zubicaray G., Zelaya F., Andrew C., Williams S., Bullmore E. (2000). Cerebral regions associated with verbal response initiation, suppression and strategy use. Neuropsychologia 38 1292–1304. 10.1016/S0028-3932(00)00026-9
    1. de Zubicaray G. I., McMahon K. L. (2009). Auditory context effects in picture naming investigated with event-related fMRI. Cogn. Affect. Behav. Neurosci. 9 260–269. 10.3758/CABN.9.3.260
    1. Dell G. S., Schwartz M. F., Martin N., Saffran E. M., Gagnon D. A. (1997). Lexical access in aphasic and nonaphasic speakers. Psychol. Rev. 104 801–838. 10.1037/0033-295X.104.4.801
    1. den Ouden D., Saur D., Mader W., Schelter B., Lukic S., Wali E., et al. (2012). Network modulation during complex syntactic processing. Neuroimage 59 815–823. 10.1016/j.neuroimage.2011.07.057
    1. Desmond J. E., Gabrieli J. D., Glover G. H. (1998). Dissociation of frontal and cerebellar activity in a cognitive task: evidence for a distinction between selection and search. Neuroimage 7 368–376. 10.1006/nimg.1998.0340
    1. Devlin J. T., Matthews P. M., Rushworth M. F. (2003). Semantic processing in the left inferior prefrontal cortex: a combined functional magnetic resonance imaging and transcranial magnetic stimulation study. J. Cogn. Neurosci. 15 71–84. 10.1162/089892903321107837
    1. Duffau H. (2008). The anatomo-functional connectivity of language revisited: new insights provided by electrostimulation and tractography. Neuropsychologia 46 927–934. 10.1016/j.neuropsychologia.2007.10.025
    1. Duffau H., Moritz-Gasser S., Mandonnet E. (2014). A re-examination of neural basis of language processing: proposal of a dynamic hodotopical model from data provided by brain stimulation mapping during picture naming. Brain Lang. 131 1–10. 10.1016/j.bandl.2013.05.011
    1. Eickhoff S. B., Heim S., Zilles K., Amunts K. (2009). A systems perspective on the effective connectivity of overt speech production. Philos. Trans. A Math. Phys. Eng. Sci. 367 2399–2421. 10.1098/rsta.2008.0287
    1. Fedorenko E., Duncan J., Kanwisher N. (2013). Broad domain generality in focal regions of frontal and parietal cortex. Proc. Natl. Acad. Sci. U.S.A. 110 16616–16621. 10.1073/pnas.1315235110
    1. Fedorenko E., Thompson-Schill S. L. (2014). Reworking the language network. Trends Cogn. Sci. 18 120–126. 10.1016/j.tics.2013.12.006
    1. Frey S., Campbell J. S., Pike G. B., Petrides M. (2008). Dissociating the human language pathways with high angular resolution diffusion fiber tractography. J. Neurosci. 28 11435–11444. 10.1523/JNEUROSCI.2388-08.2008
    1. Fridriksson J. (2010). Preservation and modulation of specific left hemisphere regions is vital for treated recovery from anomia in stroke. J. Neurosci. 30 11558–11564. 10.1523/JNEUROSCI.2227-10.2010
    1. Friston K. (2009). Causal modelling and brain connectivity in functional magnetic resonance imaging. PLoS Biol. 7:e33 10.1371/journal.pbio.1000033
    1. Friston K. J. (2011). Functional and effective connectivity: a review. Brain Connect. 1 13–36. 10.1089/brain.2011.0008
    1. Friston K. J., Harrison L., Penny W. (2003). Dynamic causal modelling. Neuroimage 19 1273–1302. 10.1016/S1053-8119(03)00202-7
    1. Glasser M. F., Rilling J. K. (2008). DTI tractography of the human brain’s language pathways. Cereb. Cortex 18 2471–2482. 10.1093/cercor/bhn011
    1. Gold B. T., Buckner R. L. (2002). Common prefrontal regions coactivate with dissociable posterior regions during controlled semantic and phonological tasks. Neuron 35 803–812. 10.1016/S0896-6273(02)00800-0
    1. Grefkes C., Fink G. R. (2011). Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches. Brain 134 1264–1276. 10.1093/brain/awr033
    1. Grefkes C., Nowak D. A., Eickhoff S. B., Dafotakis M., Küst J., Karbe H., et al. (2008). Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann. Neurol. 63 236–246. 10.1002/ana.21228
    1. Grefkes C., Nowak D. A., Wang L. E., Dafotakis M., Eickhoff S. B., Fink G. R. (2010). Modulating cortical connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modeling. Neuroimage 50 233–242. 10.1016/j.neuroimage.2009.12.029
    1. Griffiths T. D., Kumar S., Warren J. D., Stewart L., Stephan K. E., Friston K. J. (2007). Approaches to the cortical analysis of auditory objects. Hear. Res. 229 46–53. 10.1016/j.heares.2007.01.010
    1. Han Z., Ma Y., Gong G., He Y., Caramazza A., Bi Y. (2013). White matter structural connectivity underlying semantic processing: evidence from brain damaged patients. Brain 136(Pt 10), 2952–2965. 10.1093/brain/awt205
    1. Hartwigsen G., Saur D., Price C. J., Baumgaertner A., Ulmer S., Siebner H. R. (2013a). Increased facilitatory connectivity from the pre-SMA to the left dorsal premotor cortex during pseudoword repetition. J. Cogn. Neurosci. 25 580–594. 10.1162/jocn_a_00342
    1. Hartwigsen G., Saur D., Price C. J., Ulmer S., Baumgaertner A., Siebner H. R. (2013b). Perturbation of the left inferior frontal gyrus triggers adaptive plasticity in the right homologous area during speech production. Proc. Natl. Acad. Sci. U.S.A. 110 16402–16407. 10.1073/pnas.1310190110
    1. Heim S., Eickhoff S. B., Amunts K. (2009a). Different roles of cytoarchitectonic BA 44 and BA 45 in phonological and semantic verbal fluency as revealed by dynamic causal modelling. Neuroimage 48 616–624. 10.1016/j.neuroimage.2009.06.044
    1. Heim S., Eickhoff S. B., Ischebeck A. K., Friederici A. D., Stephan K. E., Amunts K. (2009b). Effective connectivity of the left BA 44 BA 45 and inferior temporal gyrus during lexical and phonological decisions identified with DCM. Hum. Brain Mapp. 30 392–402. 10.1002/hbm.20512
    1. Heiss W., Thiel A. (2006). A proposed regional hierarchy in recovery of post-stroke aphasia. Brain Lang. 98 118–123. 10.1016/j.bandl.2006.02.002
    1. Hoffman P., Jefferies E., Ralph M. A. L. (2011). Explaining semantic short-term memory deficits: evidence for the critical role of semantic control. Neuropsychologia 49 368–381. 10.1016/j.neuropsychologia.2010.12.034
    1. Howard D., Nickels L., Coltheart M., Cole-Virtue J. (2006). Cumulative semantic inhibition in picture naming: experimental and computational studies. Cognition 100 464–482. 10.1016/j.cognition.2005.02.006
    1. Howard D., Patterson K. (1992). Pyramids and Palm Trees. Bury St.Edmonds: Thames Valley Test Company.
    1. Indefrey P. (2011). The spatial and temporal signatures of word production components: a critical update. Front. Psychol. 2:255 10.3389/fpsyg.2011.00255
    1. Indefrey P., Levelt W. J. (2000). The Neural Correlates of Language Production. The New Cognitive Neurosciences, 2nd Edn Cambridge, MA: MIT Press, 845–865.
    1. Indefrey P., Levelt W. J. (2004). The spatial and temporal signatures of word production components. Cognition 92 101–144. 10.1016/j.cognition.2002.06.001
    1. Janssen N., Carreiras M., Barber H. A. (2011). Electrophysiological effects of semantic context in picture and word naming. Neuroimage 57 1243–1250. 10.1016/j.neuroimage.2011.05.015
    1. Jefferies E. (2013). The neural basis of semantic cognition: converging evidence from neuropsychology, neuroimaging and TMS. Cortex 49 611–625. 10.1016/j.cortex.2012.10.008
    1. Jefferies E., Baker S. S., Doran M., Ralph M. A. L. (2007). Refractory effects in stroke aphasia: a consequence of poor semantic control. Neuropsychologia 45 1065–1079. 10.1016/j.neuropsychologia.2006.09.009
    1. Jefferies E., Lambon Ralph M. A. (2006). Semantic impairment in stroke aphasia versus semantic dementia: a case-series comparison. Brain 129(Pt 8), 2132–2147. 10.1093/brain/awl153
    1. Jefferies E., Patterson K., Ralph M. A. L. (2008). Deficits of knowledge versus executive control in semantic cognition: insights from cued naming. Neuropsychologia 46 649–658. 10.1016/j.neuropsychologia.2007.09.007
    1. Jeon H., Lee K., Kim Y., Cho Z. (2009). Neural substrates of semantic relationships: common and distinct left-frontal activities for generation of synonyms vs. antonyms. Neuroimage 48 449–457. 10.1016/j.neuroimage.2009.06.049
    1. Kahan J., Foltynie T. (2013). Understanding DCM: ten simple rules for the clinician. Neuroimage 83 542–549. 10.1016/j.neuroimage.2013.07.008
    1. Kan I. P., Thompson-Schill S. L. (2004). Effect of name agreement on prefrontal activity during overt and covert picture naming. Cogn. Affect. Behav. Neurosci. 4 43–57. 10.3758/CABN.4.1.43
    1. Kaplan E., Goodglass H., Weintraub S., Segal O., van Loon-Vervoorn A. (2001). Boston Naming Test Pro-ed, 2nd Edn Philadelphia, PA: Lippincott Williams & Wilkins.
    1. Kay J., Coltheart M., Lesser R. (1992). Psycholinguistic Assessments of Language Processing in Aphasia, Vol. 2 Mahwah NJ: Lawrence Erlbaum Associates.
    1. Kertesz A. (2007). Western Aphasia Battery (Revised). San Antonio, TX: Psychological Corporation.
    1. Kiran S., Meier E. L., Kapse K. J., Glynn P. (2015). Changes in task-based effective connectivity in language networks following rehabilitation in post-stroke patients with aphasia. Front. Hum. Neurosci. 9:316 10.3389/fnhum.2015.00316
    1. Kleim J. A. (2011). Neural plasticity and neurorehabilitation: teaching the new brain old tricks. J. Commun. Disord. 44 521–528. 10.1016/j.jcomdis.2011.04.006
    1. Lemaire J., Golby A., Wells W. M., III, Pujol S., Tie Y., Rigolo L., et al. (2013). Extended Broca’s area in the functional connectome of language in adults: combined cortical and subcortical single-subject analysis using fMRI and DTI tractography. Brain Topogr. 26 428–441. 10.1007/s10548-012-0257-7
    1. Levelt W. J., Roelofs A., Meyer A. S. (1999). A theory of lexical access in speech production. Behav. Brain Sci. 22 1–38. 10.1017/S0140525X99001776
    1. Liljeström M., Kujala J., Stevenson C., Salmelin R. (2015). Dynamic reconfiguration of the language network preceding onset of speech in picture naming. Hum. Brain Mapp. 36 1202–1216. 10.1002/hbm.22697
    1. Mazaika P. K., Hoeft F., Glover G. H., Reiss A. L. (2009). Methods and software for fMRI analysis of clinical subjects. Neuroimage 47:S58 10.1016/S1053-8119(09)70238-1
    1. Mechelli A., Price C. J., Noppeney U., Friston K. J. (2003). A dynamic causal modeling study on category effects: bottom–up or top–down mediation? J. Cogn. Neurosci. 15 925–934. 10.1162/089892903770007317
    1. Meinzer M., Beeson P. M., Cappa S., Crinion J., Kiran S., Saur D., et al. (2013). Neuroimaging in aphasia treatment research: consensus and practical guidelines for data analysis. Neuroimage 73 215–224. 10.1016/j.neuroimage.2012.02.058
    1. Meinzer M., Flaisch T., Seeds L., Harnish S., Antonenko D., Witte V., et al. (2012). Same modulation but different starting points: performance modulates age differences in inferior frontal cortex activity during word-retrieval. PLoS ONE 7:e33631 10.1371/journal.pone.0033631
    1. Meinzer M., Flaisch T., Wilser L., Eulitz C., Rockstroh B., Conway T., et al. (2009). Neural signatures of semantic and phonemic fluency in young and old adults. J. Cogn. Neurosci. 21 2007–2018. 10.1162/jocn.2009.21219
    1. Mesulam M. (1990). Large scale neurocognitive networks and distributed processing for attention. Ann. Neurol. 28 597–613. 10.1002/ana.410280502
    1. Mirman D., Britt A. E. (2013). What we talk about when we talk about access deficits. Philos. Trans. R. Soc. Lon. Ser. B Biol. Sci. 369:20120388 10.1098/rstb.2012.0388
    1. Noppeney U., Price C. J., Penny W. D., Friston K. J. (2006). Two distinct neural mechanisms for category-selective responses. Cereb. Cortex 16 437–445. 10.1093/cercor/bhi123
    1. Papoutsi M., de Zwart J. A., Jansma J. M., Pickering M. J., Bednar J. A., Horwitz B. (2009). From phonemes to articulatory codes: an fMRI study of the role of Broca’s area in speech production. Cereb. Cortex 19 2156–2165. 10.1093/cercor/bhn239
    1. Papoutsi M., Stamatakis E. A., Griffiths J., Marslen-Wilson W. D., Tyler L. K. (2011). Is left fronto-temporal connectivity essential for syntax? Effective connectivity, tractography and performance in left-hemisphere damaged patients. Neuroimage 58 656–664. 10.1016/j.neuroimage.2011.06.036
    1. Park D. C., Reuter-Lorenz P. (2009). The adaptive brain: aging and neurocognitive scaffolding. Annu. Rev. Psychol. 60 173–196. 10.1146/annurev.psych.59.103006.093656
    1. Parker G. J., Luzzi S., Alexander D. C., Wheeler-Kingshott C. A., Ciccarelli O., Ralph M. A. L. (2005). Lateralization of ventral and dorsal auditory-language pathways in the human brain. Neuroimage 24 656–666. 10.1016/j.neuroimage.2004.08.047
    1. Patterson K., Nestor P. J., Rogers T. T. (2007). Where do you know what you know? the representation of semantic knowledge in the human brain. Nat. Rev. Neurosci. 8 976–987. 10.1038/nrn2277
    1. Penny W. D., Stephan K. E., Daunizeau J., Rosa M. J., Friston K. J., Schofield T. M., et al. (2010). Comparing families of dynamic causal models. PLoS Comput. Biol. 6:e1000709 10.1371/journal.pcbi.1000709
    1. Penny W. D., Stephan K. E., Mechelli A., Friston K. J. (2004). Modelling functional integration: a comparison of structural equation and dynamic causal models. Neuroimage 23 S264–S274. 10.1016/j.neuroimage.2004.07.041
    1. Poldrack R. A., Wagner A. D., Prull M. W., Desmond J. E., Glover G. H., Gabrieli J. D. (1999). Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex. Neuroimage 10 15–35. 10.1006/nimg.1999.0441
    1. Postman-Caucheteux W. A., Birn R. M., Pursley R. H., Butman J. A., Solomon J. M., Picchioni D., et al. (2010). Single-trial fMRI shows contralesional activity linked to overt naming errors in chronic aphasic patients. J. Cogn. Neurosci. 22 1299–1318. 10.1162/jocn.2009.21261
    1. Price C. J. (2010). The anatomy of language: a review of 100 fMRI studies published in 2009. Ann. N. Y. Acad. Sci. 1191 62–88. 10.1111/j.1749-6632.2010.05444.x
    1. Price C. J. (2012). A review and synthesis of the first 20years of PET and fMRI studies of heard speech, spoken language and reading. Neuroimage 62 816–847. 10.1016/j.neuroimage.2012.04.062
    1. Price C. J., Crinion J. (2005). The latest on functional imaging studies of aphasic stroke. Curr. Opin. Neurol. 18 429–434. 10.1097/01.wco.0000168081.76859.c1
    1. Rehme A. K., Eickhoff S. B., Wang L. E., Fink G. R., Grefkes C. (2011). Dynamic causal modeling of cortical activity from the acute to the chronic stage after stroke. Neuroimage 55 1147–1158. 10.1016/j.neuroimage.2011.01.014
    1. Richardson F. M., Seghier M. L., Leff A. P., Thomas M. S., Price C. J. (2011). Multiple routes from occipital to temporal cortices during reading. J. Neurosci. 31 8239–8247. 10.1523/JNEUROSCI.6519-10.2011
    1. Rogers T. T., Patterson K., Jefferies E., Ralph M. A. L. (2015). Disorders of representation and control in semantic cognition: effects of familiarity, typicality, and specificity. Neuropsychologia 76 220–239. 10.1016/j.neuropsychologia.2015.04.015
    1. Rosso C., Valabregue R., Arbizu C., Ferrieux S., Vargas P., Humbert F., et al. (2014). Connectivity between right inferior frontal gyrus and supplementary motor area predicts after-effects of right frontal cathodal tDCS on picture naming speed. Brain Stimul. 7 122–129. 10.1016/j.brs.2013.08.007
    1. Sarubbo S., De Benedictis A., Maldonado I. L., Basso G., Duffau H. (2013). Frontal terminations for the inferior fronto-occipital fascicle: anatomical dissection, DTI study and functional considerations on a multi-component bundle. Brain Struct. Funct. 218 21–37. 10.1007/s00429-011-0372-3
    1. Saur D., Kreher B. W., Schnell S., Kummerer D., Kellmeyer P., Vry M. S., et al. (2008). Ventral and dorsal pathways for language. Proc. Natl. Acad. Sci. U.S.A. 105 18035–18040. 10.1073/pnas.0805234105
    1. Saur D., Schelter B., Schnell S., Kratochvil D., Küpper H., Kellmeyer P., et al. (2010). Combining functional and anatomical connectivity reveals brain networks for auditory language comprehension. Neuroimage 49 3187–3197. 10.1016/j.neuroimage.2009.11.009
    1. Schnur T. T., Schwartz M. F., Kimberg D. Y., Hirshorn E., Coslett H. B., Thompson-Schill S. L. (2009). Localizing interference during naming: convergent neuroimaging and neuropsychological evidence for the function of broca’s area. Proc. Natl. Acad. Sci. U.S.A. 106 322–327. 10.1073/pnas.0805874106
    1. Schwartz M. F., Dell G. S., Martin N., Gahl S., Sobel P. (2006). A case-series test of the interactive two-step model of lexical access: evidence from picture naming. J. Mem. Lang. 54 228–264. 10.1016/j.jml.2005.10.001
    1. Seghier M. L., Bagdasaryan J., Jung D. E., Price C. J. (2014). The importance of premotor cortex for supporting speech production after left capsular-putaminal damage. J. Neurosci. 34 14338–14348. 10.1523/JNEUROSCI.1954-14.2014
    1. Seghier M. L., Josse G., Leff A. P., Price C. J. (2011). Lateralization is predicted by reduced coupling from the left to right prefrontal cortex during semantic decisions on written words. Cereb. Cortex 21 1519–1531. 10.1093/cercor/bhq203
    1. Seghier M. L., Neufeld N. H., Zeidman P., Leff A. P., Mechelli A., Nagendran A., et al. (2012). Reading without the left ventral occipito-temporal cortex. Neuropsychologia 50 3621–3635. 10.1016/j.neuropsychologia.2012.09.030
    1. Seghier M. L., Price C. J. (2010). Reading aloud boosts connectivity through the putamen. Cereb. Cortex 20 570–582. 10.1093/cercor/bhp123
    1. Seghier M. L., Zeidman P., Neufeld N. H., Leff A. P., Price C. J. (2010). Identifying abnormal connectivity in patients using dynamic causal modeling of fMRI responses. Front. Syst. Neurosci. 4:142 10.3389/fnsys.2010.00142
    1. Smith J. F., Braun A. R., Alexander G. E., Chen K., Horwitz B. (2013). Separating lexical-semantic access from other mnemonic processes in picture-name verification. Front. Psychol. 4:706 10.3389/fpsyg.2013.00706
    1. Snijders T. M., Petersson K. M., Hagoort P. (2010). Effective connectivity of cortical and subcortical regions during unification of sentence structure. Neuroimage 52 1633–1644. 10.1016/j.neuroimage.2010.05.035
    1. Spalek K., Thompson-Schill S. L. (2008). Task-dependent semantic interference in language production: an fMRI study. Brain Lang. 107 220–228. 10.1016/j.bandl.2008.05.005
    1. Stephan K. E., Penny W. D., Daunizeau J., Moran R. J., Friston K. J. (2009). Bayesian model selection for group studies. Neuroimage 46 1004–1017. 10.1016/j.neuroimage.2009.03.025
    1. Stephan K. E., Penny W. D., Moran R. J., den Ouden H. E., Daunizeau J., Friston K. J. (2010). Ten simple rules for dynamic causal modeling. Neuroimage 49 3099–3109. 10.1016/j.neuroimage.2009.11.015
    1. Thompson C. K., den Ouden D. (2008). Neuroimaging and recovery of language in aphasia. Curr. Neurol. Neurosci. Rep. 8 475–483. 10.1007/s11910-008-0076-0
    1. Thompson H. E., Jefferies E. (2013). Semantic control and modality: an input processing deficit in aphasia leading to deregulated semantic cognition in a single modality. Neuropsychologia 51 1998–2015. 10.1016/j.neuropsychologia.2013.06.030
    1. Thompson-Schill S. L., D’Esposito M., Aguirre G. K., Farah M. J. (1997). Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation. Proc. Natl. Acad. Sci. U.S.A. 94 14792–14797. 10.1073/pnas.94.26.14792
    1. Turkeltaub P. E., Messing S., Norise C., Hamilton R. H. (2011). Are networks for residual language function and recovery consistent across aphasic patients? Neurology 76 1726–1734. 10.1212/WNL.0b013e31821a44c1
    1. Turken A. U., Dronkers N. F. (2011). The neural architecture of the language comprehension network: converging evidence from lesion and connectivity analyses. Front. Syst. Neurosci. 5:1 10.3389/fnsys.2011.00001
    1. Vandenberghe R., Wang Y., Nelissen N., Vandenbulcke M., Dhollander T., Sunaert S., et al. (2013). The associative-semantic network for words and pictures: effective connectivity and graph analysis. Brain Lang. 127 264–272. 10.1016/j.bandl.2012.09.005
    1. Van der Wouden T. (1990). Celex: building a multifunctional polytheoretical lexical data base. Proc. BudaLex Budapest 88 363–373.
    1. Vigneau M., Beaucousin V., Herve P., Duffau H., Crivello F., Houde O., et al. (2006). Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing. Neuroimage 30 1414–1432. 10.1016/j.neuroimage.2005.11.002
    1. Vigneau M., Beaucousin V., Hervé P., Jobard G., Petit L., Crivello F., et al. (2011). What is right-hemisphere contribution to phonological, lexico-semantic, and sentence processing? Insights from a meta-analysis. Neuroimage 54 577–593. 10.1016/j.neuroimage.2010.07.036
    1. Visser M., Jefferies E., Embleton K. V., Ralph M. A. L. (2012). Both the middle temporal gyrus and the ventral anterior temporal area are crucial for multimodal semantic processing: distortion-corrected fMRI evidence for a double gradient of information convergence in the temporal lobes. J. Cogn. Neurosci. 24 1766–1778. 10.1162/jocn_a_00244
    1. Visser M., Jefferies E., Ralph M. L. (2010). Semantic processing in the anterior temporal lobes: a meta-analysis of the functional neuroimaging literature. J. Cogn. Neurosci. 22 1083–1094. 10.1162/jocn.2009.21309
    1. Vitali P., Abutalebi J., Tettamanti M., Rowe J., Scifo P., Fazio F., et al. (2005). Generating animal and tool names: an fMRI study of effective connectivity. Brain Lang. 93 32–45. 10.1016/j.bandl.2004.08.005
    1. Wagner A. D., Paré-Blagoev E. J., Clark J., Poldrack R. A. (2001). Recovering meaning: left prefrontal cortex guides controlled semantic retrieval. Neuron 31 329–338. 10.1016/S0896-6273(01)00359-2
    1. Whitney C., Kirk M., O’Sullivan J., Lambon Ralph M. A., Jefferies E. (2011). The neural organization of semantic control: TMS evidence for a distributed network in left inferior frontal and posterior middle temporal gyrus. Cereb. Cortex 21 1066–1075. 10.1093/cercor/bhq180
    1. Zahn R., Schwarz M., Huber W. (2006). Functional activation studies of word processing in the recovery from aphasia. J. Physiol. Paris 99 370–385. 10.1016/j.jphysparis.2006.03.013

Source: PubMed

3
Subscribe