Transvenous vagus nerve stimulation does not modulate the innate immune response during experimental human endotoxemia: a randomized controlled study

Matthijs Kox, Lucas T van Eijk, Tim Verhaak, Tim Frenzel, Harmke D Kiers, Jelle Gerretsen, Johannes G van der Hoeven, Lilian Kornet, Avram Scheiner, Peter Pickkers, Matthijs Kox, Lucas T van Eijk, Tim Verhaak, Tim Frenzel, Harmke D Kiers, Jelle Gerretsen, Johannes G van der Hoeven, Lilian Kornet, Avram Scheiner, Peter Pickkers

Abstract

Introduction: Vagus nerve stimulation (VNS) exerts beneficial anti-inflammatory effects in various animal models of inflammation, including collagen-induced arthritis, and is implicated in representing a novel therapy for rheumatoid arthritis. However, evidence of anti-inflammatory effects of VNS in humans is very scarce. Transvenous VNS (tVNS) is a newly developed and less invasive method to stimulate the vagus nerve. In the present study, we determined whether tVNS is a feasible and safe procedure and investigated its putative anti-inflammatory effects during experimental human endotoxemia.

Methods: We performed a randomized double-blind sham-controlled study in healthy male volunteers. A stimulation catheter was inserted in the left internal jugular vein at spinal level C5-C7, adjacent to the vagus nerve. In the tVNS group (n = 10), stimulation was continuously performed for 30 minutes (0-10 V, 1 ms, 20 Hz), starting 10 minutes before intravenous administration of 2 ng kg(-1) Escherichia coli lipopolysaccharide (LPS). Sham-instrumented subjects (n = 10) received no electrical stimulation.

Results: No serious adverse events occurred throughout the study. In the tVNS group, stimulation of the vagus nerve was achieved as indicated by laryngeal vibration. Endotoxemia resulted in fever, flu-like symptoms, and hemodynamic changes that were unaffected by tVNS. Furthermore, plasma levels of inflammatory cytokines increased sharply during endotoxemia, but responses were similar between groups. Finally, cytokine production by leukocytes stimulated with LPS ex vivo, as well as neutrophil phagocytosis capacity, were not influenced by tVNS.

Conclusions: tVNS is feasible and safe, but does not modulate the innate immune response in humans in vivo during experimental human endotoxemia.

Trial registration: Clinicaltrials.gov NCT01944228. Registered 12 September 2013.

Figures

Fig. 1
Fig. 1
Schematic overview of the study procedures. LPS lipopolysaccharide, tVNS transvenous vagus nerve stimulation
Fig. 2
Fig. 2
Hemodynamic parameters, temperature, and symptoms. a Heart rate (HR). b Mean arterial pressure (MAP). c Temperature. d Score of self-reported symptoms. Data are expressed as mean and SEM of 10 subjects per group. The gray box indicates the period in which the (sham) stimulation took place. Within-group changes over time were all highly significant (p < 0.0001 for all parameters in both groups, calculated using repeated measures one-way ANOVA). p-values depicted indicate differences between groups over time calculated using repeated measures two-way ANOVA (interaction term). AU arbitrary units, LPS lipopolysaccharide, tVNS transvenous vagus nerve stimulation
Fig. 3
Fig. 3
Plasma concentrations of inflammatory cytokines. a Tumor necrosis factor (TNF)-α. b Interleukin (IL)-6. c IL-8 (d) IL-10. Data are expressed as medians of 10 subjects per group. Inserted bar graphs depict median and interquartile range of area under curve of cytokine time courses. Within-group changes over time were all highly significant (p < 0.0001 for all cytokines in both groups, calculated using Friedman tests). p-values depicted were calculated using Mann-Whitney U-tests. LPS lipopolysaccharide, tVNS transvenous vagus nerve stimulation
Fig. 4
Fig. 4
Cytokine production of leukocytes stimulated ex vivo with lipopolysaccharide (LPS). a Tumor necrosis factor (TNF)-α. b Interleukin (IL)-6. Data expressed as mean and SEM of 10 subjects per group. Within-group changes over time were all highly significant (p < 0.0001 for all parameters in both groups, calculated using repeated measures one-way ANOVA). p-values depicted indicate differences between groups over time calculated using repeated measures two-way ANOVA (interaction term). tVNS transvenous vagus nerve stimulation
Fig. 5
Fig. 5
Neutrophil phagocytosis capacity. a Representative example of gating of neutrophils in the leukocyte population using forward side-scatter characteristics. b Representative example of gating of phRodo positive-neutrophils (phycoerythrin (PE) channel) within the neutrophil gate. c Phagocytic index calculated using the formula: pHrodo positive neutrophils × MFI of pHrodo-positive neutrophils. Data in panel c are expressed as mean and SEM of 10 subjects per group. Within-group changes over time were not significant (p = 0.38 and p = 0.14 for the sham and tVNS groups, respectively, calculated using repeated measures one-way ANOVA). p-values depicted indicate differences between groups over time calculated using repeated measures two-way ANOVA (interaction term). AU arbitrary units, FS forward scatter, LPS lipopolysaccharide, SS side scatter, tVNS transvenous vagus nerve stimulation

References

    1. Choy EH, Panayi GS. Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med. 2001;344:907–16. doi: 10.1056/NEJM200103223441207.
    1. Buch MH, Emery P. New therapies in the management of rheumatoid arthritis. Curr Opin Rheumatol. 2011;23:245–51. doi: 10.1097/BOR.0b013e3283454124.
    1. Hansel TT, Kropshofer H, Singer T, Mitchell JA, George AJ. The safety and side effects of monoclonal antibodies. Nat Rev Drug Discov. 2010;9:325–38. doi: 10.1038/nrd3003.
    1. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405:458–62. doi: 10.1038/35013070.
    1. van Westerloo DJ, Giebelen IA, Meijers JC, Daalhuisen J, de Vos AF, Levi M, et al. Vagus nerve stimulation inhibits activation of coagulation and fibrinolysis during endotoxemia in rats. J Thromb Haemost. 2006;4:1997–2002. doi: 10.1111/j.1538-7836.2006.02112.x.
    1. Huston JM, Gallowitsch-Puerta M, Ochani M, Ochani K, Yuan R, Rosas-Ballina M, et al. Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis. Crit Care Med. 2007;35:2762–8. doi: 10.1097/.
    1. Levy G, Fishman JE, Xu D, Chandler BT, Feketova E, Dong W, et al. Parasympathetic stimulation via the vagus nerve prevents systemic organ dysfunction by abrogating gut injury and lymph toxicity in trauma and hemorrhagic shock. Shock. 2013;39:39–44.
    1. Bernik TR, Friedman SG, Ochani M, DiRaimo R, Susarla S, Czura CJ, et al. Cholinergic antiinflammatory pathway inhibition of tumor necrosis factor during ischemia reperfusion. J Vasc Surg. 2002;36:1231–6. doi: 10.1067/mva.2002.129643.
    1. Guarini S, Altavilla D, Cainazzo MM, Giuliani D, Bigiani A, Marini H, et al. Efferent vagal fibre stimulation blunts nuclear factor-kappaB activation and protects against hypovolemic hemorrhagic shock. Circulation. 2003;107:1189–94. doi: 10.1161/01.CIR.0000050627.90734.ED.
    1. Song XM, Li JG, Wang YL, Hu ZF, Zhou Q, Du ZH, et al. The protective effect of the cholinergic anti-inflammatory pathway against septic shock in rats. Shock. 2008;30:468–72. doi: 10.1097/SHK.0b013e31816d5e49.
    1. Levine YA, Koopman FA, Faltys M, Caravaca A, Bendele A, Zitnik R, et al. Neurostimulation of the cholinergic anti-inflammatory pathway ameliorates disease in rat collagen-induced arthritis. PLoS One. 2014;9:e104530. doi: 10.1371/journal.pone.0104530.
    1. van Maanen MA, Papke RL, Koopman FA, Koepke J, Bevaart L, Clark R, et al. Two novel alpha7 nicotinic acetylcholine receptor ligands: in vitro properties and their efficacy in collagen-induced arthritis in mice. PLoS One. 2015;10:e0116227. doi: 10.1371/journal.pone.0116227.
    1. van Maanen MA, Lebre MC, van der Poll T, LaRosa GJ, Elbaum D, Vervoordeldonk MJ, et al. Stimulation of nicotinic acetylcholine receptors attenuates collagen-induced arthritis in mice. Arthritis Rheum. 2009;60:114–22. doi: 10.1002/art.24177.
    1. van Maanen MA, Vervoordeldonk MJ, Tak PP. The cholinergic anti-inflammatory pathway: towards innovative treatment of rheumatoid arthritis. Nat Rev Rheumatol. 2009;5:229–32. doi: 10.1038/nrrheum.2009.31.
    1. Koopman FA, Schuurman PR, Vervoordeldonk MJ, Tak PP. Vagus nerve stimulation: a new bioelectronics approach to treat rheumatoid arthritis? Best Pract Res Clin Rheumatol. 2014;28:625–35. doi: 10.1016/j.berh.2014.10.015.
    1. Morris GL, 3rd, Mueller WM. Long-term treatment with vagus nerve stimulation in patients with refractory epilepsy. The Vagus Nerve Stimulation Study Group E01-E05. Neurology. 1999;53:1731–5. doi: 10.1212/WNL.53.8.1731.
    1. Cristancho P, Cristancho MA, Baltuch GH, Thase ME, O’Reardon JP. Effectiveness and safety of vagus nerve stimulation for severe treatment-resistant major depression in clinical practice after FDA approval: outcomes at 1 year. J Clin Psychiatry. 2011;72:1376–82. doi: 10.4088/JCP.09m05888blu.
    1. de Herdt V, Bogaert S, Bracke KR, Raedt R, De Vos M, Vonck K, et al. Effects of vagus nerve stimulation on pro- and anti-inflammatory cytokine induction in patients with refractory epilepsy. J Neuroimmunol. 2009;214:104–8. doi: 10.1016/j.jneuroim.2009.06.008.
    1. Rossi P, Ricci A, De Paulis R, Papi E, Pavaci H, Porcelli D, et al. Epicardial ganglionated plexus stimulation decreases postoperative inflammatory response in humans. Heart Rhythm. 2012;9:943–50. doi: 10.1016/j.hrthm.2012.01.025.
    1. Fan K, Yee R, Gula L, Bentley C, Scheiner A, Lam S, et al. Transvenous vagus nerve stimulation: a potential heart failure therapy is feasible in humans. J Am Coll Cardiol. 2010;55:A16. doi: 10.1016/S0735-1097(10)60007-1.
    1. Fan K, Yee R, Gula L, Bentley C, Scheiner A, Lam S, et al. Low amplitude vagus nerve stimulation affects heart rate and neurohormones in humans. J Am Coll Cardiol. 2010;55:A16. doi: 10.1016/S0735-1097(10)60007-1.
    1. Granowitz EV, Porat R, Mier JW, Orencole SF, Callahan MV, Cannon JG, et al. Hematologic and immunomodulatory effects of an interleukin-1 receptor antagonist coinfusion during low-dose endotoxemia in healthy humans. Blood. 1993;82:2985–90.
    1. Suffredini AF, Reda D, Banks SM, Tropea M, Agosti JM, Miller R. Effects of recombinant dimeric TNF receptor on human inflammatory responses following intravenous endotoxin administration. J Immunol. 1995;155:5038–45.
    1. Bahador M, Cross AS. From therapy to experimental model: a hundred years of endotoxin administration to human subjects. J Endotoxin Res. 2007;13:251–79. doi: 10.1177/0968051907085986.
    1. Kox M, de Kleijn S, Pompe JC, Ramakers BP, Netea MG, van der Hoeven JG, et al. Differential ex vivo and in vivo endotoxin tolerance kinetics following human endotoxemia. Crit Care Med. 2011;39:1866–70. doi: 10.1097/CCM.0b013e3182190d5d.
    1. Kox M, Pompe JC, de Gouberville MCG, van der Hoeven JG, Hoedemaekers CW, Pickkers P. Effects of the alpha7 nicotinic acetylcholine receptor agonist GTS-21 on the innate immune response in humans. Shock. 2011;36:5–11. doi: 10.1097/SHK.0b013e3182168d56.
    1. Binks AP, Paydarfar D, Schachter SC, Guz A, Banzett RB. High strength stimulation of the vagus nerve in awake humans: a lack of cardiorespiratory effects. Respir Physiol. 2001;127:125–33. doi: 10.1016/S0034-5687(01)00252-3.
    1. Lundy DS, Casiano RR, Landy HJ, Gallo J, Gallo B, Ramsey RE. Effects of vagal nerve stimulation on laryngeal function. J Voice. 1993;7:359–64. doi: 10.1016/S0892-1997(05)80259-0.
    1. Handforth A, DeGiorgio CM, Schachter SC, Uthman BM, Naritoku DK, Tecoma ES, et al. Vagus nerve stimulation therapy for partial-onset seizures: a randomized active-control trial. Neurology. 1998;51:48–55. doi: 10.1212/WNL.51.1.48.
    1. Kox M, Vrouwenvelder MQ, Pompe JC, van der Hoeven JG, Pickkers P, Hoedemaekers CW. The effects of brain injury on heart rate variability and the innate immune response in critically ill patients. J Neurotrauma. 2012;29:747–55. doi: 10.1089/neu.2011.2035.
    1. Saeed RW, Varma S, Peng-Nemeroff T, Sherry B, Balakhaneh D, Huston J, et al. Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation. J Exp Med. 2005;201:1113–23. doi: 10.1084/jem.20040463.
    1. van der Zanden EP, Snoek SA, Heinsbroek SE, Stanisor OI, Verseijden C, Boeckxstaens GE, et al. Vagus nerve activity augments intestinal macrophage phagocytosis via nicotinic acetylcholine receptor alpha4beta2. Gastroenterology. 2009;137:1029–39. doi: 10.1053/j.gastro.2009.04.057.
    1. Andersson U, Tracey KJ. Neural reflexes in inflammation and immunity. J Exp Med. 2012;209:1057–68. doi: 10.1084/jem.20120571.
    1. Huston JM, Rosas-Ballina M, Xue X, Dowling O, Ochani K, Ochani M, et al. Cholinergic neural signals to the spleen down-regulate leukocyte trafficking via CD11b. J Immunol. 2009;183:552–9. doi: 10.4049/jimmunol.0802684.
    1. Lowry SF. Human endotoxemia: a model for mechanistic insight and therapeutic targeting. Shock. 2005;24:94–100. doi: 10.1097/01.shk.0000191340.23907.a1.
    1. : Registry and results database of publicly and privately supported clinical studies of human participants conducted around the world: .
    1. Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A. 2013;110:3507–12. doi: 10.1073/pnas.1222878110.
    1. Huston JM, Ochani M, Rosas-Ballina M, Liao H, Ochani K, Pavlov VA, et al. Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. J Exp Med. 2006;203:1623–8. doi: 10.1084/jem.20052362.
    1. Barone L, Colicchio G, Policicchio D, Di Clemente F, Di Monaco A, Meglio M, et al. Effect of vagal nerve stimulation on systemic inflammation and cardiac autonomic function in patients with refractory epilepsy. Neuroimmunomodulation. 2007;14:331–6. doi: 10.1159/000127360.
    1. Galli R, Limbruno U, Pizzanelli C, Giorgi FS, Lutzemberger L, Strata G, et al. Analysis of RR variability in drug-resistant epilepsy patients chronically treated with vagus nerve stimulation. Auton Neurosci. 2003;107:52–9. doi: 10.1016/S1566-0702(03)00081-X.
    1. Ronkainen E, Korpelainen JT, Heikkinen E, Myllyla VV, Huikuri HV, Isojarvi JI. Cardiac autonomic control in patients with refractory epilepsy before and during vagus nerve stimulation treatment: a one-year follow-up study. Epilepsia. 2006;47:556–62. doi: 10.1111/j.1528-1167.2006.00467.x.
    1. Setty AB, Vaughn BV, Quint SR, Robertson KR, Messenheimer JA. Heart period variability during vagal nerve stimulation. Seizure. 1998;7:213–7. doi: 10.1016/S1059-1311(98)80038-1.
    1. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003;421:384–8. doi: 10.1038/nature01339.
    1. Corcoran C, Connor TJ, O’Keane V, Garland MR. The effects of vagus nerve stimulation on pro- and anti-inflammatory cytokines in humans: a preliminary report. Neuroimmunomodulation. 2005;12:307–9. doi: 10.1159/000087109.
    1. Majoie HJ, Rijkers K, Berfelo MW, Hulsman JA, Myint A, Schwarz M, et al. Vagus nerve stimulation in refractory epilepsy: effects on pro- and anti-inflammatory cytokines in peripheral blood. Neuroimmunomodulation. 2011;18:52–6. doi: 10.1159/000315530.
    1. Koopman FA, Miljko S, Grazio S, Sokolovic S, Tracey K, Levine YA. Pilot study of stimulation of the cholinergic anti-inflammatory pathway with an implantable vagus nerve stimulation device in patients with rheumatoid arthritis. Arthritis Rheum. 2012;64:451.
    1. de Vos AF, Pater JM, van den Pangaart PS, Pater JM, de Kruif MD, van’t Veer C, et al. In vivo lipopolysaccharide exposure of human blood leukocytes induces cross-tolerance to multiple TLR ligands. J Immunol. 2009;183:533–42. doi: 10.4049/jimmunol.0802189.
    1. Draisma A, Dorresteijn M, Pickkers P, van der Hoeven H. The effect of systemic iNOS inhibition during human endotoxemia on the development of tolerance to different TLR-stimuli. Innate Immun. 2008;14:153–9. doi: 10.1177/1753425908091959.
    1. van’t Veer C, van den Pangaart PS, van Zoelen MA, de Kruif M, Birjmohun RS, Stroes ES, et al. Induction of IRAK-M is associated with lipopolysaccharide tolerance in a human endotoxemia model. J Immunol. 2007;179:7110–20. doi: 10.4049/jimmunol.179.10.7110.
    1. Fernandes ML, Mendes ME, Brunialti MK, Salomao R. Human monocytes tolerant to LPS retain the ability to phagocytose bacteria and generate reactive oxygen species. Braz J Med Biol Res. 2010;43:860–8. doi: 10.1590/S0100-879X2010007500081.

Source: PubMed

3
Subscribe