Examining the Gastrointestinal and Immunomodulatory Effects of the Novel Probiotic Bacillus subtilis DE111

Kimberley E Freedman, Jessica L Hill, Yuren Wei, Allegra R Vazquez, Diana S Grubb, Roxanne E Trotter, Scott D Wrigley, Sarah A Johnson, Michelle T Foster, Tiffany L Weir, Kimberley E Freedman, Jessica L Hill, Yuren Wei, Allegra R Vazquez, Diana S Grubb, Roxanne E Trotter, Scott D Wrigley, Sarah A Johnson, Michelle T Foster, Tiffany L Weir

Abstract

Probiotics make up a large and growing segment of the commercial market of dietary supplements and are touted as offering a variety of human health benefits. Some of the purported positive impacts of probiotics include, but are not limited to, stabilization of the gut microbiota, prevention of gastrointestinal disorders and modulation of the host immune system. Current research suggests that the immunomodulatory effects of probiotics are strain-specific and vary in mode of action. Here, we examined the immunomodulatory properties of Bacillus subtilis strain DE111 in a healthy human population. In a pilot randomized, double blind, placebo-controlled four-week intervention, we examined peripheral blood mononuclear cells (PBMCs) at basal levels pre- and post-intervention, as well as in response to stimulation with bacterial lipopolysaccharide (LPS). We observed an increase in anti-inflammatory immune cell populations in response to ex vivo LPS stimulation of PBMCs in the DE111 intervention group. Overall perceived gastrointestinal health, microbiota, and circulating and fecal markers of inflammation (Il-6, sIgA) and gut barrier function (plasma zonulin) were largely unaffected by DE111 intervention, although the study may have been underpowered to detect these differences. These pilot data provide information and justification to conduct an appropriately powered clinical study to further examine the immunomodulatory potential of B. subtilis DE111 in human populations.

Keywords: Bacillus subtilis; flow cytometry; gastrointestinal health; immune cells; peripheral blood mononuclear cells (PBMC); probiotic; short chain fatty acid.

Conflict of interest statement

The study was funded by Deerland Enzymes and Probiotics, Kennesaw, GA and TLW became a member of their Scientific Advisory Council in November 2020. The funders had no role in the design of the study; in the collection, analysis, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results. They did provide the treatment capsules for the study, conducted the treatment blinding, and supplied qPCR primer sequences for the B. subtilis DE111.

Figures

Figure 1
Figure 1
Consort flow diagram of study recruitment, randomization and completion.
Figure 2
Figure 2
Symptom severity scores were based on answers to a GI symptom questionnaire by Metagenics [16] that is designed to provide a functional measure to assess symptoms associated with gastric function (A), gastrointestinal inflammation (B), small intestine/pancreas pain (C), and colon pain (D). Error bars represent ±SEM, # indicates a statistical trend (p = 0.051–0.08).
Figure 3
Figure 3
Levels of B. subtilis DNA detected in fecal samples collected pre- and post-intervention (A) and the change in logDNA from baseline between the two intervention groups (B) indicate that DE111 consumption increases B. subtilis in the GI tract. However, four weeks of DE111 consumption did not significantly alter the composition and structure of the gut microbiota (C). Error bars represent ±SEM. * indicates p-values <0.05 and ** indicate p-values <0.01. Ellipses in the PCoA represent the 95% CI.
Figure 4
Figure 4
The major microbially-produced short chain fatty acids (SCFA), acetate (A), propionate (B), and butyrate (C) quantified in feces at baseline and post-intervention. Error bars represent ±SEM, *denotes p < 0.05.
Figure 5
Figure 5
Basal immune status at baseline and post-intervention in Placebo and DE111 groups: Total CD3+ T cell populations (A), CD4+ T regulatory subpopulations (B), T cell variants (C), and myeloid and B cells (D). Error bars represent ± SEM. * denotes p < 0.05, **denotes p < 0.01, and # denotes a p-value between 0.05–0.08.
Figure 6
Figure 6
Cellular responses to LPS stimulation, calculated as stimulated/basal cell counts for CD25+ (A) and CD25+FoxP3+ (B) regulatory T cell populations, as well as double-positive CD4+CD8+ T cells (C) and CD8+ cytotoxic T cells (D). Error bars represent ± SEM. * denotes p < 0.05 and # denotes a p-value between 0.05–0.08.

References

    1. Sender R., Fuchs S., Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. [(accessed on 20 August 2016)];PLoS Biol. 2016 14:e1002533. doi: 10.1371/journal.pbio.1002533. Available online: .
    1. Rhee K.J., Sethupathi P., Driks A., Lanning D.K., Knight K.L. Role of commensal bacteria in development of gut-associated lymphoid tissues and preimmune antibody repertoire. [(accessed on 7 January 2004)];J. Immunol. 2004 172:1118–1124. doi: 10.4049/jimmunol.172.2.1118. Available online: .
    1. Brestoff J.R., Artis D. Commensal bacteria at the interface of host metabolism and the immune system. [(accessed on 20 June 2013)];Nat. Immunol. 2013 14:676–684. doi: 10.1038/ni.2640. Available online: .
    1. Chung H., Pamp S.J., Hill J.A., Surana N.K., Edelman S.M., Troy E.B., Reading N.C., Villablanca E.J., Wang S., Mora J.R., et al. Gut immune maturation depends on colonization with a host-specific microbiota. [(accessed on 26 June 2012)];Cell. 2012 149:1578–1593. doi: 10.1016/j.cell.2012.04.037. Available online: .
    1. Mazmanian S.K., Liu C.H., Tzianabos A.O., Kasper D.L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. [(accessed on 13 July 2005)];Cell. 2005 122:107–118. doi: 10.1016/j.cell.2005.05.007. Available online: .
    1. Mazmanian S.K., Round J.L., Kasper D.L. A microbial symbiosis factor prevents intestinal inflammatory disease. [(accessed on 30 May 2008)];Nature. 2008 453:620–625. doi: 10.1038/nature07008. Available online: .
    1. Smith P.M., Howitt M.R., Panikov N., Michaud M., Gallini C.A., Bohlooly Y.M., Glickman J.N., Garrett W.S. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. [(accessed on 6 July 2013)];Science. 2013 341:569–573. doi: 10.1126/science.1241165. Available online: .
    1. Levy M., Thaiss C.A., Zeevi D., Dohnalova L., Zilberman-Schapira G., Mahdi J.A., David E., Savidor A., Korem T., Herzig Y., et al. Microbiota-Modulated Metabolites Shape the Intestinal Microenvironment by Regulating NLRP6 Inflammasome Signaling. [(accessed on 8 December 2015)];Cell. 2015 163:1428–1443. doi: 10.1016/j.cell.2015.10.048. Available online: .
    1. Cuentas A.M., Deaton J., Khan S., Davidson J., Ardita C. The Effect of Bacillus subtilis DE111 on the Daily Bowel Movement Profile for People with Occasional Gastrointestinal Irregularity. J. Probiotics Health. 2017;5:1–4. doi: 10.4172/2329-8901.1000189.
    1. Hong H.A., le Duc H., Cutting S.M. The use of bacterial spore formers as probiotics. [(accessed on 17 August 2005)];FEMS Microbiol Rev. 2005 29:813–835. doi: 10.1016/j.femsre.2004.12.001. Available online: .
    1. Hong H.A., Khaneja R., Tam N.M.K., Cazzato A., Tan S., Urdaci M., Brisson A., Gasbarrini A., Barnes I., Cutting S.M. Bacillus subtilis isolated from the human gastrointestinal tract. Res. Microbiol. 2009;160:134–143. doi: 10.1016/j.resmic.2008.11.002.
    1. Jones S.E., Paynich M.L., Kearns D.B., Knight K.L. Protection from intestinal inflammation by bacterial exopolysaccharides. [(accessed on 18 April 2014)];J. Immunol. 2014 192:4813–4820. doi: 10.4049/jimmunol.1303369. Available online: .
    1. Serra C.R., Earl A.M., Barbosa T.M., Kolter R., Henriques A.O. Sporulation during growth in a gut isolate of Bacillus subtilis. [(accessed on 17 September 2014)];J. Bacteriol. 2014 196:4184–4196. doi: 10.1128/JB.01993-14. Available online: .
    1. Tam N.K., Uyen N.Q., Hong H.A., Duc le H., Hoa T.T., Serra C.R., Hetnriques A.O., Cutting S.M. The intestinal life cycle of Bacillus subtilis and close relatives. [(accessed on 21 March 2006)];J. Bacteriol. 2006 188:2692–2700. doi: 10.1128/JB.188.7.2692-2700.2006. Available online: .
    1. Paynich M.L., Jones-Burrage S.E., Knight K.L. Exopolysaccharide from Bacillus subtilis Induces Anti-Inflammatory M2 Macrophages That Prevent T Cell–Mediated Disease. [(accessed on 4 December 2020)];J. Immunol. 2017 198:2689–2698. doi: 10.4049/jimmunol.1601641. Available online:
    1. Grubb D.S., Wrigley S.D., Freedman K.E., Wei Y., Vazquez A.R., Trotter R.E., Wallace T.C., Johnson S.A., Weir T.L. Phage-2 study: Supplemental bacteriophages extend bifidobacterium animals subsp. lactis bl04 benefits on gut health and microbiota in healthy adults. Nutrients. 2020;12:2474. doi: 10.3390/nu12082474.
    1. Hanifi A., Culpepper T., Mai V., Anand A., Ford A.L., Ukhanova M., Christman M., Tompkins T., Dahl W. Evaluation of Bacillus subtilis R0179 on gastrointestinal viability and general wellness: A randomised, double-blind, placebo-controlled trial in healthy adults. [(accessed on 4 December 2020)];Benef. Microbes. 2015 6:19–27. doi: 10.3920/BM2014.0031. Available online:
    1. Townsend J., Bender D., Vantrease W., Sapp P., Toy A., Woods C., Johnson K.D. Effects of Probiotic (Bacillus subtilis DE111) Supplementation on Immune Function, Hormonal Status, and Physical Performance in Division I Baseball Players. [(accessed on 4 December 2020)];Sports. 2018 6:70. doi: 10.3390/sports6030070. Available online: .
    1. Paytuví-Gallart A., Sanseverino W., Winger A.M. Daily intake of probiotic strain Bacillus subtilis DE111 supports a healthy microbiome in children attending day-care. [(accessed on 4 December 2020)];Benef. Microbes. 2020 11:611–620. doi: 10.3920/BM2020.0022. Available online: .
    1. Maher M. Tolerance and Effect of a Probiotic Supplement Delivered in Capsule Form. Food Nutr. Sci. 2019;10:626–634. doi: 10.4236/fns.2019.106046.
    1. Trotter R.E., Vazquez A.R., Grubb D.S., Freedman K.E., Grabos L.E., Jones S., Gentile C., Melby C., Johnson S., Weir T. Bacillus subtilis DE111 intake may improve blood lipids and endothelial function in healthy adults. [(accessed on 4 December 2020)];Benef. Microbes. 2020 11:621–630. doi: 10.3920/BM2020.0039. Available online: .
    1. Elshaghabee F.M.F., Rokana N., Gulhane R.D., Sharma C., Panwar H. Bacillus As Potential Probiotics: Status, Concerns, and Future Perspectives. [(accessed on 4 December 2020)];Front. Microbiol. 2017 8:1490. doi: 10.3389/fmicb.2017.01490. Available online: .
    1. Yu T., Kong J., Zhang L., Gu X., Wang M., Guo T. New crosstalk between probiotics Lactobacillus plantarum and Bacillus subtilis. [(accessed on 4 December 2020)];Sci. Rep. 2019 9:13151. doi: 10.1038/s41598-019-49688-8. Available online: .
    1. Guo Q., Goldenberg J.Z., Humphrey C., El Dib R., Johnston B.C. Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database Syst. Rev. 2019;4:CD004827. doi: 10.1002/14651858.CD004827.pub5.
    1. Lefevre M., Racedo S.M., Ripert G., Housez B., Cazaubiel M., Maudet C., Jüsten P., Marteau P., Urdaci M.C. Probiotic strain Bacillus subtilis CU1 stimulates immune system of elderly during common infectious disease period: A randomized, double-blind placebo-controlled study. [(accessed on 8 December 2015)];Immun. Ageing. 2015 12:24. doi: 10.1186/s12979-015-0051-y. Available online: .
    1. Konieczna P., Groeger D., Ziegler M., Frei R., Ferstl R., Shanahan F., Quigley E.M.M., Kiely B., A Akdis C., O’Mahony L. Bifidobacterium infantis 35624 administration induces Foxp3 T regulatory cells in human peripheral blood: Potential role for myeloid and plasmacytoid dendritic cells. Gut. 2012;61:354–366. doi: 10.1136/gutjnl-2011-300936.
    1. Johansson M.A., Björkander S., Forsberg M.M., Qazi K.R., Celades M.S., Bittmann J., Eberl M., Sverremark-Ekström E. Probiotic lactobacilli modulate Staphylococcus aureus-induced activation of conventional and unconventional T cells and NK cells. [(accessed on 16 December 2020)];Front. Immunol. 2016 7:273. doi: 10.3389/fimmu.2016.00273. Available online: .
    1. De Roock S., Van Elk M., Hoekstra M.O., Prakken B.J., Rijkers G.T., de Kleer I.M. Gut derived lactic acid bacteria induce strain specific CD4+ T cell responses in human PBMC. Clin. Nutr. 2011;30:845–851. doi: 10.1016/j.clnu.2011.05.005.
    1. Hua M.C., Lin T.Y., Lai M.W., Kong M.S., Chang H.J., Chen C.C. Probiotic Bio-Three induces Th1 and anti-inflammatory effects in PBMC and dendritic cells. [(accessed on 11 February 2021)];World J. Gastroenterol. 2010 16:3529–3540. doi: 10.3748/wjg.v16.i28.3529. Available online:
    1. Gomes J.M.G., de Costa J.A., de Alfenas R.C.G. Metabolic endotoxemia and diabetes mellitus: A systematic review. Metab. Clin. Exp. 2017;68:133–144. doi: 10.1016/j.metabol.2016.12.009.
    1. Overgaard N.H., Jung J.-W., Steptoe R.J., Wells J.W. CD4+/CD8+ double-positive T cells: More than just a developmental stage? [(accessed on 16 December 2020)];J. Leukoc. Biol. 2015 97:31–38. doi: 10.1189/jlb.1RU0814-382. Available online: .
    1. Clénet M.-L., Gagnon F., Moratalla A.C., Viel E.C., Arbour N. Peripheral human CD4+CD8+ T lymphocytes exhibit a memory phenotype and enhanced responses to IL-2, IL-7 and IL-15. Sci. Rep. 2017;7:1–15. doi: 10.1038/s41598-017-11926-2.
    1. Murphy K., Weaver C. Janeway’s Immunobiology. 9th ed. Garland Science, Taylor & Francis Group, LLC; New York, NY, USA: 2017.
    1. Wagar L.E., Difazio R.M., Davis M.M. Advanced model systems and tools for basic and translational human immunology. Genome Med. 2018;10:1–14. doi: 10.1186/s13073-018-0584-8.
    1. Kosaka T., Maeda T., Nakada Y., Yukawa M., Tanaka S. Effect of Bacillus subtilis spore administration onactivation of macrophages and natural killer cells inmice. Vet. Microbiol. 1998;60:215–225. doi: 10.1016/S0378-1135(97)00102-8.
    1. de Lima D.C., Souza C.M.M., Nakamura N., Mesa D., de Oliveira S.G., Félix A.P. Dietary supplementation with Bacillus subtilis C-3102 improves gut health indicators and fecal microbiota of dogs. Anim. Feed Sci. Technol. 2020;270:114672. doi: 10.1016/j.anifeedsci.2020.114672.
    1. Cao J., Yu Z., Liu W., Zhao J., Zhang H., Zhai Q., Chen W. Probiotic characteristics of Bacillus coagulans and associated implications for human health and diseases. J. Funct. Foods. 2020;46:103643. doi: 10.1016/j.jff.2019.103643.
    1. Blimkie D., Fortuno E.S., Yan H., Cho P., Ho K., Turvey S.E., Marchant A., Goriely S., Kollmann T.R. Variables to be controlled in the assessment of blood innate immune responses to Toll-like receptor stimulation. [(accessed on 4 December 2020)];J. Immunol. Methods. 2011 366:89–99. doi: 10.1016/j.jim.2011.01.009. Available online:
    1. Martikainen M.V., Roponen M. Cryopreservation affected the levels of immune responses of PBMCs and antigen-presenting cells. [(accessed on 4 December 2020)];Toxicol. In Vitro. 2020 67:104918. doi: 10.1016/j.tiv.2020.104918. Available online:
    1. Chen K., Xie S., Iglesia E., Bell A.T. A PCR test to identify Bacillus subtilis and closely related species and its application to the monitoring of wastewater biotreatment. Appl. Microbiol. Biotechnol. 2001;56:816–819.
    1. Febvre H.P., Rao S., Gindin M., Goodwin N.D.M., Finer E., Vivanco J.S., Lu S., Manter D.K., Wallace T.C., Weir T.L. PHAGE study: Effects of supplemental bacteriophage intake on inflammation and gut microbiota in healthy adults. [(accessed on 9 July 2020)];Nutrients. 2019 11:666. doi: 10.3390/nu11030666. Available online:

Source: PubMed

3
Subscribe