Preclinical efficacy and clinical safety of clinical-grade nebulized allogenic adipose mesenchymal stromal cells-derived extracellular vesicles

Meng-Meng Shi, Qing-Yuan Yang, Antoine Monsel, Jia-Yang Yan, Cheng-Xiang Dai, Jing-Ya Zhao, Guo-Chao Shi, Min Zhou, Xue-Mei Zhu, Su-Ke Li, Ping Li, Jing Wang, Meng Li, Ji-Gang Lei, Dong Xu, Ying-Gang Zhu, Jie-Ming Qu, Meng-Meng Shi, Qing-Yuan Yang, Antoine Monsel, Jia-Yang Yan, Cheng-Xiang Dai, Jing-Ya Zhao, Guo-Chao Shi, Min Zhou, Xue-Mei Zhu, Su-Ke Li, Ping Li, Jing Wang, Meng Li, Ji-Gang Lei, Dong Xu, Ying-Gang Zhu, Jie-Ming Qu

Abstract

Mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) turn out to be a promising source of cell-free therapy. Here, we investigated the biodistribution and effect of nebulized human adipose-derived MSC-EVs (haMSC-EVs) in the preclinical lung injury model and explored the safety of nebulized haMSC-EVs in healthy volunteers. DiR-labelled haMSC-EVs were used to explore the distribution of nebulized haMSC-EVs in the murine model. Pseudomonas aeruginosa-induced murine lung injury model was established, and survival rate, as well as WBC counts, histology, IL-6, TNF-α and IL-10 levels in bronchoalveolar lavage fluid (BALF) were measured to explore the optimal therapeutic dose of haMSC-EVs through the nebulized route. Twenty-four healthy volunteers were involved and received the haMSC-EVs once, ranging from 2 × 108 particles to 16 × 108 particles (MEXVT study, NCT04313647). Nebulizing haMSC-EVs improved survival rate to 80% at 96 h in P. aeruginosa-induced murine lung injury model by decreasing lung inflammation and histological severity. All volunteers tolerated the haMSC-EVs nebulization well, and no serious adverse events were observed from starting nebulization to the 7th day after nebulization. These findings suggest that nebulized haMSC-EVs could be a promising therapeutic strategy, offering preliminary evidence to promote the future clinical applications of nebulized haMSC-EVs in lung injury diseases.

Keywords: extracellular vesicles; healthy volunteers; lung injury; mesenchymal stromal cells; nebulization.

Conflict of interest statement

The authors indicate no potential conflicts of interest.

© 2021 The Authors. Journal of Extracellular Vesicles published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles.

Figures

FIGURE 1
FIGURE 1
The manufacture and characterization of haMSC‐EVs. (a) haMSC‐EVs manufacture. (b) Representative electron microscopic photograph of haMSC‐EVs, scale bar = 100 nm. (c) The concentration and size distribution of haMSC‐EVs were determined by NTA. (d) Representative western blots showing the expression of EV markers, including CD9, CD81, CD63, TSG101, and CANX. haMSC‐EVs: human adipose‐derived MSC‐Extracellular vesicles; NTA: Nanoparticle Tracking Analysis
FIGURE 2
FIGURE 2
Mesh nebulizer set‐up and biodistribution of haMSC‐EVs. (a‐b) Vibrating mesh nebulizer set‐up. (c) Biodistribution of DiR‐labelled haMSC‐EVs in vivo continuously until 28 days post‐nebulization. (d) Biodistribution of DiR‐labelled haMSC‐EVs in vitro continuously until 28 days post‐nebulization. The list of terms represents the layout of isolated organs. haMSC‐EVs: human adipose‐derived MSC‐Extracellular vesicles
FIGURE 3
FIGURE 3
Therapeutic effects of haMSC‐EVs in P. aeruginosa‐induced murine lung injury model. (a) Kaplan‐Meier survival curves of P. aeruginosa‐induced murine lung injury model (N = 10 per group). (b‐c) Aerosol inhalation of haMSC‐EVs post‐infection decreased the influx of white blood cells (P = 0.0026, ** indicates P < 0.01, 2.0 ± 0.3 for PA + NS, 0.8 ± 0.1 for PA + haMSC‐EVs, N = 5) and neutrophils (P = 0.0029, ** indicates P < 0.01, 1.9 ± 0.3 for PA, 0.7 ± 0.1 for PA + haMSC‐EVs, N = 5) in BALF at 24 h. (d) The BALF levels of IL‐6 (**** indicates P < 0.0001, 990.1 ± 12.3 for PA + NS, 316.3 ± 18.9 for PA + haMSC‐EVs, N = 5), TNF‐α (P = 0.0044, ** indicates P < 0.01, 589.9 ± 68.4 for PA + NS, 294.8 ± 31.7 for PA + haMSC‐EVs, N = 5) were decreased in haMSC‐EVs group. The level of IL‐10 expression was increased (P = 0.0032, ** indicates P < 0.01, 17.2 ± 3.1 for PA + NS, 34.4 ± 2.7 for PA + haMSC‐EVs, N = 5) in haMSC‐EVs group. (e) The histology showed less inflammatory cells infiltrating interalveolar septa and respecting alveolar space and lung architecture. (f) Aerosol inhalation of haMSC‐EVs post‐infection also reduced histological severity of lung injury better than other groups (**** indicates P < 0.0001, 0.908 ±0.03 for PA + NS, 0.284 ± 0.03 for PA + haMSC‐EVs, N = 5). haMSC‐EVs: human adipose‐derived MSC‐Extracellular vesicles; PA: P. aeruginosa; L‐929‐Exos: NCTC clone 929 cells derived exosomes; BALF: bronchoalveolar lavage fluid; WBC: white blood cell; IL‐6: interleukin 6; TNF‐α: tumour necrosis factor‐α; IL‐10: interleukin 10
FIGURE 4
FIGURE 4
Flow diagram for MEXVT. WBC: white blood cell; haMSC‐EVs: human adipose‐derived MSC‐Extracellular vesicles
FIGURE 5
FIGURE 5
Clinical characters of healthy volunteers. (a) Vital sign parameters before and after haMSC‐EVs nebulization in MEXVT. (b) Level of IgE before and after haMSC‐EVs nebulization in MEXVT. haMSC‐EVs: human adipose‐derived MSC‐Extracellular vesicles; IgE: ImmunoglobulinE

References

    1. Bartolucci, J., Verdugo, F. J., González, P. L., Larrea, R. E., Abarzua, E., Goset, C., Rojo, P., Palma, I., Lamich, R., Pedreros, P. A., Valdivia, G., Lopez, V. M., Nazzal, C., Alcayaga‐Miranda, F., Cuenca, J., Brobeck, M. J., Patel, A. N., Figueroa, F. E., & Khoury, M. (2017).Safety and efficacy of the intravenous infusion of umbilical cord mesenchymal stem cells in patients with heart failure: a phase 1/2 Randomized Controlled Trial (RIMECARD Trial [Randomized Clinical Trial of Intravenous Infusion Umbilical Cord Mesenchymal. Circulation Research, 121, 1192–1204.
    1. Camussi, G., Deregibus, M. C., Bruno, S., Cantaluppi, V., & Biancone, L.. (2010). Exosomes/microvesicles as a mechanism of cell‐to‐cell communication. Kidney International 78, 838–848.
    1. Curley, G. F., Jerkic, M., Dixon, S., Hogan, G., Masterson, C., O'Toole, D., Devaney, J., & Laffey, J. G. (2017). Cryopreserved, Xeno‐free human umbilical cord mesenchymal stromal cells reduce lung injury severity and bacterial burden in rodent Escherichia coli‐induced acute respiratory distress syndrome. Critical Care Medicine 45, e202–e212.
    1. Devaney, J., Horie, S., Masterson, C., Elliman, S., Barry, F., O'Brien, T., Curley, G. F., O'Toole, D., & Laffey, J. G. (2015).Human mesenchymal stromal cells decrease the severity of acute lung injury induced by E. coli in the rat. Thorax, 70, 625–635.
    1. Dinh, P‐U. C., Paudel, D., Brochu, H., Popowski, K. D., Gracieux, M. C., Cores, J., Huang, K., Hensley, M. T., Harrell, E., Vandergriff, A. C., George, A. K., Barrio, R. T., Hu, S., Allen, T. A., Blackburn, K., Caranasos, T. G., Peng, X., Schnabel, L. V., Adler, K. B.…Cheng, K. (2020).Inhalation of lung spheroid cell secretome and exosomes promotes lung repair in pulmonary fibrosis. Nature communications, 11, 1064.
    1. Fan, E., Brodie, D., & Slutsky, A. S. (2018). Acute respiratory distress syndrome: advances in diagnosis and treatment. JAMA, 319, 698–710.
    1. Galindo‐Filho, V. C., Alcoforado, L., Rattes, C., Paiva, D. N., Brandão, S. C. S., Fink, J. B., & Dornelas de Andrade, A. (2019). A mesh nebulizer is more effective than jet nebulizer to nebulize bronchodilators during non‐invasive ventilation of subjects with COPD: A randomized controlled trial with radiolabeled aerosols. Respiratory Medicine, 153, 60–67.
    1. Gao, L., Zhang, Y., Hu, B., Liu, J., Kong, P., Lou, S., Su, Y., Yang, T., Li, H., Liu, Y., Zhang, C., Gao, L., Zhu, L., Wen, Q., Wang, P., Chen, X., Zhong, J., & Zhang, X.. (2016). Phase II multicenter, randomized, double‐blind controlled study of efficacy and safety of umbilical cord‐derived mesenchymal stromal cells in the prophylaxis of chronic graft‐versus‐host disease after HLA‐haploidentical stem‐cell transplantation. Journal of Clinical Oncology, 34, 2843–2850.
    1. Gupta, N., Krasnodembskaya, A., Kapetanaki, M., Mouded, M., Tan, X., Serikov, V., & Matthay, M. A. (2012).Mesenchymal stem cells enhance survival and bacterial clearance in murine Escherichia coli pneumonia. Thorax, 67, 533–539.
    1. Kaspi, H., Semo, J., Abramov, N., Dekel, C., Lindborg, S., Kern, R., Lebovits, C., & Aricha, R. (2021). MSC‐NTF (NurOwn®) exosomes: A novel therapeutic modality in the mouse LPS‐induced ARDS model. Stem Cell Research & Therapy, 12, 72.
    1. Khatri, M., Richardson, L. A., & Meulia, T. (2018).Mesenchymal stem cell‐derived extracellular vesicles attenuate influenza virus‐induced acute lung injury in a pig model. Stem Cell Research & Therapy, 9, 17.
    1. Kim, E. S., Chang, Y. S., Choi, S. J., Kim, J. K., Yoo, H. S., Ahn, S. Y., Sung, D. K., Kim, S. Y., Park, Y. R., & Park, W. S. (2011).Intratracheal transplantation of human umbilical cord blood‐derived mesenchymal stem cells attenuates Escherichia coli‐induced acute lung injury in mice. Respiratory Research 12, 108.
    1. Lee, J. W., Krasnodembskaya, A., McKenna, D. H., Song, Y., Abbott, J., & Matthay, M. A.. (2013). Therapeutic effects of human mesenchymal stem cells in ex vivo human lungs injured with live bacteria. American Journal of Respiratory and Critical Care Medicine, 187, 751–760.
    1. Li, Q.‐C., Liang, Y., & Su, Z.‐B. (2019).Prophylactic treatment with MSC‐derived exosomes attenuates traumatic acute lung injury in rats. American Journal of Physiology. Lung Cellular and Molecular Physiology, 316, L1107–L1117.
    1. Liu, J.‐S., Du, J., Cheng, X., Zhang, X.‐Z., Li, Y., & Chen, X.‐L. (2019). Exosomal miR‐451 from human umbilical cord mesenchymal stem cells attenuates burn‐induced acute lung injury. Journal of the Chinese Medical Association, 82, 895–901.
    1. Loy, H., Kuok, D. I. T., Hui, K. P. Y., Choi, M. H. L., Yuen, W., Nicholls, J. M., Peiris, J. S. M., & Chan, M. C. W. (2019). Therapeutic implications of human umbilical cord mesenchymal stromal cells in attenuating influenza A(H5N1) virus‐associated acute lung injury. Journal of Infectious Diseases, 219, 186–196.
    1. Mao, Y. ‐. X., Xu, J. ‐. F., Seeley, E. J., Tang, X. ‐. D., Xu, L. ‐. L., Zhu, Y. ‐. G., Song, Y. ‐. L., & Qu, J. ‐. M.. (2015). Adipose tissue‐derived mesenchymal stem cells attenuate pulmonary infection caused by pseudomonas aeruginosa via inhibiting overproduction of prostaglandin E2. Stem Cells, 33, 2331–2342.
    1. Matthay, M. A., Calfee, C. S., Zhuo, H., Thompson, B. T., Wilson, J. G., Levitt, J. E., Rogers, A. J., Gotts, J. E., Wiener‐Kronish, J. P., Bajwa, E. K., Donahoe, M. P., McVerry, B. J., Ortiz, L. A., Exline, M., Christman, J. W., Abbott, J., Delucchi, K. L., Caballero, L., McMillan, M.…Liu, K. D. (2019).Treatment with allogeneic mesenchymal stromal cells for moderate to severe acute respiratory distress syndrome (START study): A randomised phase 2a safety trial. The lancet. Respiratory Medicine, 7, 154–162.
    1. Matthay, M. A., Zemans, R. L., Zimmerman, G. A., Arabi, Y. M., Beitler, J. R., Mercat, A., Herridge, M., Randolph, A. G., & Calfee, C. S.. (2019). Acute respiratory distress syndrome. Nature Reviews, 5, 18.
    1. McCarthy, S. D., Horgan, E., Ali, A., Masterson, C., Laffey, J. G., MacLoughlin, R., & O'Toole, D. (2020).Nebulized mesenchymal stem cell derived conditioned medium retains antibacterial properties against clinical pathogen isolates. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 33, 140–152.
    1. Meng, F., Xu, R., Wang, S., Xu, Z., Zhang, C., Li, Y., Yang, T., Shi, L., Fu, J., Jiang, T., Huang, L., Zhao, P., Yuan, X., Fan, X., Zhang, J.‐Y., Song, J., Zhang, D., Jiao, Y., Liu, L.…Wang, F.‐S. (2020).Human umbilical cord‐derived mesenchymal stem cell therapy in patients with COVID‐19: A phase 1 clinical trial. Signal Transduction and Targeted Therapy, 5, 172.
    1. Monsel, A., Zhu, Y., Gennai, S., Hao, Q., Hu, S., Rouby, J.‐J., Rosenzwajg, M., Matthay, M. A., & Lee, J. W. (2015).Therapeutic effects of human mesenchymal stem cell‐derived microvesicles in severe pneumonia in mice. American Journal of Respiratory and Critical Care Medicine, 192, 324–336.
    1. Monsel, A., Zhu, Y. G., Gennai, S., Hao, Q., Hu, S., Rouby, J. J., Rosenzwajg, M., Matthay, M. A., & Lee, J. W. (2015).Therapeutic effects of human mesenchymal stem cell‐derived microvesicles in severe pneumonia in mice. American Journal of Respiratory and Critical Care Medicine, 192, 324–336.
    1. Panés, J., García‐Olmo, D., Van Assche, G., Colombel, J. F., Reinisch, W., Baumgart, D. C., Dignass, A., Nachury, M., Ferrante, M., Kazemi‐Shirazi, L., Grimaud, J. C., de la Portilla, F., Goldin, E., Richard, M. P., Leselbaum, A., & Danese, S.. (2016). Expanded allogeneic adipose‐derived mesenchymal stem cells (Cx601) for complex perianal fistulas in Crohn's disease: a phase 3 randomised, double‐blind controlled trial. Lancet (London, England), 388, 1281–1290.
    1. Park, J., Kim, S., Lim, H., Liu, A., Hu, S., Lee, J., Zhuo, H., Hao, Q., Matthay, M. A., & Lee, J.‐W. (2019).Therapeutic effects of human mesenchymal stem cell microvesicles in an ex vivo perfused human lung injured with severe E. coli pneumonia. Thorax, 74, 43–50.
    1. Petrou, P., Gothelf, Y., Argov, Z., Gotkine, M., Levy, Y. S., Kassis, I., Vaknin‐Dembinsky, A., Ben‐Hur, T., Offen, D., Abramsky, O., Melamed, E., & Karussis, D. (2016).Safety and clinical effects of mesenchymal stem cells secreting neurotrophic factor transplantation in patients with amyotrophic lateral sclerosis: results of phase 1/2 and 2a clinical trials. JAMA neurology, 73, 337–344.
    1. Ratajczak, J., Wysoczynski, M., Hayek, F., Janowska‐Wieczorek, A., & Ratajczak, M. Z. (2006).Membrane‐derived microvesicles: Important and underappreciated mediators of cell‐to‐cell communication. Leukemia, 20, 1487–1495.
    1. Rouby, J. J., Sole‐Lleonart, C., & Rello, J. (2020).Ventilator‐associated pneumonia caused by multidrug‐resistant Gram‐negative bacteria: understanding nebulization of aminoglycosides and colistin. Intensive Care Medicine, 46, 766–770.
    1. Sengupta, V., Sengupta, S., Lazo, A., Woods, P., Nolan, A., & Bremer, N. (2020).Exosomes derived from bone marrow mesenchymal stem cells as treatment for severe COVID‐19. Stem Cells and Development, 29, 747–754.
    1. Shi, M.‐M., Monsel, A., Rouby, J.‐J., Xu, Y.‐P., Zhu, Y.‐G., & Qu, J.‐M. (2019).Inoculation pneumonia caused by coagulase negative staphylococcus. Front Microbiology 10, 2198.
    1. Shi, M.‐M., Zhu, Y.‐G., Yan, J.‐Y., Rouby, J.‐J., Summah, H., Monsel, A., & Qu, J.‐M. (2021).Role of miR‐466 in mesenchymal stromal cell derived extracellular vesicles treating inoculation pneumonia caused by multidrug‐resistant Pseudomonas aeruginosa. Clinical and Translational Medicine, 11, e287.
    1. Shu, L., Niu, C., Li, R., Huang, T., Wang, Y., Huang, M., Ji, N., Zheng, Y., Chen, X., Shi, L., Wu, M., Deng, K., Wei, J., Wang, X., Cao, Y., Yan, J., & Feng, G. (2020).Treatment of severe COVID‐19 with human umbilical cord mesenchymal stem cells. Stem Cell Research Therapy, 11, 1–11.
    1. Sung, D. K., Chang, Y. S., Sung, S. I., Yoo, H. S., Ahn, S. Y., & Park, W. S. (2016).Antibacterial effect of mesenchymal stem cells against Escherichia coli is mediated by secretion of beta‐ defensin‐ 2 via toll‐ like receptor 4 signalling. Cellular Microbiology, 18, 424–436.
    1. Thompson, B. T., Chambers, R. C., & Liu, K. D.. (2017). Acute respiratory distress syndrome. New England Journal of Medicine, 377, 562–572.
    1. Wilson, J. G., Liu, K. D., Zhuo, H., Caballero, L., McMillan, M., Fang, X., Cosgrove, K., Vojnik, R., Calfee, C. S., Lee, J. W., Rogers, A. J., Levitt, J., Wiener‐Kronish, J., Bajwa, E. K., Leavitt, A., McKenna, D., Thompson, B. T., & Matthay, M. A. (2015).Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial. The Lancet. Respiratory Medicine, 3, 24–32.
    1. Xu, B., Gan, C. ‐. X., Chen, S. ‐. S., Li, J. ‐. Q., Liu, M. ‐. Z., & Guo, G. ‐. H.. (2020). BMSC‐derived exosomes alleviate smoke inhalation lung injury through blockade of the HMGB1/NF‐κB pathway. Life Sciences, 257, 118042.
    1. Zheng, G., Huang, L., Tong, H., Shu, Q., Hu, Y., Ge, M., Deng, K., Zhang, L., Zou, B., Cheng, B., & Xu, J. (2014).Treatment of acute respiratory distress syndrome with allogeneic adipose‐derived mesenchymal stem cells: A randomized, placebo‐controlled pilot study. Respiratory Research, 15, 39.
    1. Zhou, Q. T., Tang, P., Leung, S. S. Y., Chan, J. G. Y., & Chan, H.‐K. (2014).Emerging inhalation aerosol devices and strategies: Where are we headed? Advanced Drug Delivery Reviews, 75, 3–17.

Source: PubMed

3
Subscribe