Sensorimotor performance in acute-subacute non-specific neck pain: a non-randomized prospective clinical trial with intervention

Renaud Hage, Christine Detrembleur, Frédéric Dierick, Jean-Michel Brismée, Nathalie Roussel, Laurent Pitance, Renaud Hage, Christine Detrembleur, Frédéric Dierick, Jean-Michel Brismée, Nathalie Roussel, Laurent Pitance

Abstract

Background: The assessment of cervical spine kinematic axial rotation performance is of great importance in the context of the study of neck sensorimotor control. However, studies addressing the influence of the level of provocation of spinal pain and the potential benefit of passive manual therapy mobilizations in patients with acute-subacute non-specific neck pain are lacking.

Methods: A non-randomized prospective clinical trial with an intervention design was conducted. We investigated: (1) the test-retest reliability of kinematic variables during a fast axial head rotation task standardized with the DidRen laser test device in 42 Healthy pain-free Control Participants (HCP) (24.3 years ±6.8); (2) the differences in kinematic variables between HCP and 38 patients with Acute-subacute Non-Specific neck Pain (ANSP) assigned to two different groups according to whether their pain was localized in the upper or lower spine (46.2 years ±16.3); and (3) the effect of passive manual therapy mobilizations on kinematic variables of the neck during fast axial head rotation.

Results: (1) Intra-class correlation coefficients ranged from moderate (0.57 (0.06-0.80)) to excellent (0.96 (0.91-0.98)). (2) Kinematic performance during fast axial rotations of the head was significantly altered in ANSP compared to HCP (age-adjusted) for one variable: the time between peaks of acceleration and deceleration (p<0.019). No significant difference was observed between ANSP with upper vs lower spinal pain localization. (3) After the intervention, there was a significant effect on several kinematic variables, e.g., ANSP improved peak speed (p<0.007) and performance of the DidRen laser test (p<0.001), with effect sizes ranging from small to medium.

Conclusion: (1) The DidRen laser test is reliable. (2) A significant reduction in time between acceleration and deceleration peaks was observed in ANSP compared to HCP, but with no significant effect of spinal pain location on kinematic variables was found. (3) We found that neck pain decreased after passive manual therapy mobilizations with improvements of several kinematic variables.

Trial registration: Registration Number: NCT04407637.

Keywords: Cervical rotation; acute non-specific neck pain; passive mobilizations; sensorimotor assessment.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Flow chart. Inclusion of 38 Patients (ANSP) and 42 Controls (HCP) with the three aims of the study presented: Reliability (test-retest reliability of kinematic variables), Validity (differences in kinematic variables between HCP and ANSP (upper vs lower spine pain localization: based on the manual examination, 38 ANSP were assigned to either the upper (C0-C2; n=17) or lower (C3 to C7; n=21) spine pain group)), and Intervention (effect of manual therapeutic interventions on kinematic variables assessed between the first and second DidRen laser tests). For blinding reasons, a first examiner supervised the completion of the questionnaires, the DidRen laser test, and the active cervical spine rotation test (range of motion). The questionnaires included the Neck Disability Index (NDI), the French version of the Bournemouth questionnaire (BQ), the Tampa scale of Kinesiophobia (TSK) (except for HCP), and the Numeric Pain Rating Scale (NPRS). A second examiner performed the cervical spine manual examination and the passive manual therapy mobilization sessions. Based on the manual examination, 12 HCP who experienced pain were excluded from the study; 42 HCP were then included
Fig. 2
Fig. 2
Installation of the DidRen laser test. A Head position in front of targets. B Schematic top view of the test setup with the three photosensitive sensors. C Helmet worn by participant with laser on top and DYSKIMOT on forehead
Fig. 3
Fig. 3
Typical plots of variables analyzed during a right rotation in a HCP from the younger adult group (age: 22 yrs., sex: female). We calculated the angular speed and acceleration of the head-neck complex from the beginning to the end of each rotation cycle. All values are expressed in absolute values. A (1) range of motion during the test (ROM test in °); (2) overshoot (°s-1); (3) stabilization time (s); (4) peak speed (°s-1); B (5) time to peak speed (s); (6) average speed (° s-1); (7) peak acceleration (°s-2); C (8) time to peak acceleration (s); (9) peak deceleration (°s-2); (10) time to peak deceleration (s); (11) time between peaks of acceleration and deceleration (s); (12) time from peak acceleration to end of rotation (s); D (13) angle at maximum speed (°)

References

    1. Fejer R, Kyvik KO, Hartvigsen J. The prevalence of neck pain in the world population: a systematic critical review of the literature. Eur Spine J. 2006;15(6):834–848. doi: 10.1007/s00586-004-0864-4.
    1. Hoy DG, Protani M, De R, Buchbinder R. The epidemiology of neck pain. Best Pract Res Clin Rheumatol. 2010;24(6):783–792. doi: 10.1016/j.berh.2011.01.019.
    1. Vos T, Barber RM, Bell B, Bertozzi-Villa A, Biryukov S, Bolliger I, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386(9995):743–800. doi: 10.1016/s0140-6736(15)60692-4.
    1. Blanpied PR, Gross AR, Elliott JM, Devaney LL, Clewley D, Walton DM, et al. Neck pain: revision 2017. J Orthop Sports Phys Ther. 2017;47(7):A1–a83. doi: 10.2519/jospt.2017.0302.
    1. Childs JD, Cleland JA, Elliott JM, Teyhen DS, Wainner RS, Whitman JM, et al. Neck pain: clinical practice guidelines linked to the international classification of functioning, disability, and health from the Orthopedic Section of the American Physical Therapy Association. J Orthop Sports Phys Ther. 2008;38(9):A1–a34. doi: 10.2519/jospt.2008.0303.
    1. Coulter ID, Crawford C, Vernon H, Hurwitz EL, Khorsan R, Booth MS, et al. Manipulation and mobilization for treating chronic nonspecific neck pain: a systematic review and meta-analysis for an appropriateness panel. Pain Phys. 2019;22(2):E55–e70. doi: 10.36076/ppj/2019.22.E55.
    1. Childs JD, Fritz JM, Piva SR, Whitman JM. Proposal of a classification system for patients with neck pain. J Orthop Sports Phys Ther. 2004;34(11):686–696. doi: 10.2519/jospt.2004.34.11.686.
    1. Kristjansson E, Treleaven J. Sensorimotor function and dizziness in neck pain: implications for assessment and management. J Orthop Sports Phys Ther. 2009;39(5):364–377. doi: 10.2519/jospt.2009.2834.
    1. Treleaven J. Sensorimotor disturbances in neck disorders affecting postural stability, head and eye movement control. Man Ther. 2008;13(1):2–11. doi: 10.1016/j.math.2007.06.003.
    1. Bogduk N. On cervical zygapophysial joint pain after whiplash. Spine (Phila Pa 1976) 2011;36(25 Suppl):S194–S199. doi: 10.1097/BRS.0b013e3182387f1d.
    1. Lee H, Nicholson LL, Adams RD. Cervical range of motion associations with subclinical neck pain. Spine (Phila Pa 1976) 2004;29(1):33–40. doi: 10.1097/.
    1. Rudolfsson T, Bjorklund M, Djupsjobacka M. Range of motion in the upper and lower cervical spine in people with chronic neck pain. Man Ther. 2012;17(1):53–59. doi: 10.1016/j.math.2011.08.007.
    1. Roijezon U, Djupsjobacka M, Bjorklund M, Hager-Ross C, Grip H, Liebermann DG. Kinematics of fast cervical rotations in persons with chronic neck pain: a cross-sectional and reliability study. BMC Musculoskelet Disord. 2010;11:222. doi: 10.1186/1471-2474-11-222.
    1. Roijezon U, Clark NC, Treleaven J. Proprioception in musculoskeletal rehabilitation. Part 1: Basic science and principles of assessment and clinical interventions. Man Ther. 2015;20(3):368–377. doi: 10.1016/j.math.2015.01.008.
    1. Sarig Bahat H, Weiss PL, Sprecher E, Krasovsky A, Laufer Y. Do neck kinematics correlate with pain intensity, neck disability or with fear of motion? Man Ther. 2014;19(3):252–258. doi: 10.1016/j.math.2013.10.006.
    1. Dugailly PM, Coucke A, Salem W, Feipel V. Assessment of cervical stiffness in axial rotation among chronic neck pain patients: a trial in the framework of a non-manipulative osteopathic management. Clin Biomech. 2018;53:65–71. doi: 10.1016/j.clinbiomech.2018.02.005.
    1. Sarig Bahat H, Weiss PL, Laufer Y. Neck pain assessment in a virtual environment. Spine (Phila Pa 1976) 2010;35(4):E105–E112. doi: 10.1097/BRS.0b013e3181b79358.
    1. Sarig Bahat H, Chen X, Reznik D, Kodesh E, Treleaven J. Interactive cervical motion kinematics: sensitivity, specificity and clinically significant values for identifying kinematic impairments in patients with chronic neck pain. Man Ther. 2015;20(2):295–302. doi: 10.1016/j.math.2014.10.002.
    1. Kristjansson E, Hardardottir L, Asmundardottir M, Gudmundsson K. A new clinical test for cervicocephalic kinesthetic sensibility: “the fly”. Arch Phys Med Rehabil. 2004;85(3):490–495. doi: 10.1016/S0003-9993(03)00619-1.
    1. Revel M, Andre-Deshays C, Minguet M. Cervicocephalic kinesthetic sensibility in patients with cervical pain. Arch Phys Med Rehabil. 1991;72(5):288–291.
    1. Hage R, Ancenay E. Identification of a relationship between cervical spine function and rotational movement control. Ann Phys Rehabil Med. 2009;52(9):653–667. doi: 10.1016/j.rehab.2009.04.003.
    1. Hage R, Buisseret F, Pitance L, Brismee JM, Detrembleur C, Dierick F. Head-neck rotational movements using DidRen laser test indicate children and seniors’ lower performance. PLoS One. 2019;14(7):e0219515. doi: 10.1371/journal.pone.0219515.
    1. Hage R, Dierick F, Roussel N, Pitance L, Detrembleur C. Age-related kinematic performance should be considered during fast head-neck rotation target task in individuals aged from 8 to 85 years old. PeerJ. 2019;7. 10.7717/peerj.7095.
    1. Bennett SE, Schenk RJ, Simmons ED. Active range of motion utilized in the cervical spine to perform daily functional tasks. J Spinal Disord Tech. 2002;15(4):307–311. doi: 10.1097/00024720-200208000-00008.
    1. Bible JE, Biswas D, Miller CP, Whang PG, Grauer JN. Normal functional range of motion of the cervical spine during 15 activities of daily living. J Spinal Disord Tech. 2010;23(1):15–21. doi: 10.1097/BSD.0b013e3181981632.
    1. Panjabi MM. The stabilizing system of the spine. Part II. Neutral zone and instability hypothesis. J Spinal Disord. 1992;5(4):390–396. doi: 10.1097/00002517-199212000-00002.
    1. Dugailly PM, De Santis R, Tits M, Sobczak S, Vigne A, Feipel V. Head repositioning accuracy in patients with neck pain and asymptomatic subjects: concurrent validity, influence of motion speed, motion direction and target distance. Eur Spine J. 2015;24(12):2885–2891. doi: 10.1007/s00586-015-4263-9.
    1. Penning L, Wilmink JT. Rotation of the cervical spine. A CT study in normal subjects. Spine. 1987;12(8):732–738. doi: 10.1097/00007632-198710000-00003.
    1. de Zoete RM, Osmotherly PG, Rivett DA, Farrell SF, Snodgrass SJ. Sensorimotor control in individuals with idiopathic neck pain and healthy individuals: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2016. 10.1016/j.apmr.2016.09.121.
    1. Michiels S, De Hertogh W, Truijen S, November D, Wuyts F, Van de Heyning P. The assessment of cervical sensory motor control: a systematic review focusing on measuring methods and their clinimetric characteristics. Gait Posture. 2013;38(1):1–7. doi: 10.1016/j.gaitpost.2012.10.007.
    1. de Zoete RMJ, Osmotherly PG, Rivett DA, Snodgrass SJ. Cervical sensorimotor control does not change over time and is not related to chronic idiopathic neck pain characteristics: a 6-month longitudinal observational study. Phys Ther. 2020;100(2):268–282. doi: 10.1093/ptj/pzz167.
    1. Haavik H, Murphy B. The role of spinal manipulation in addressing disordered sensorimotor integration and altered motor control. J Electromyogr Kinesiol. 2012;22(5):768–776. doi: 10.1016/j.jelekin.2012.02.012.
    1. Meisingset I, Stensdotter AK, Woodhouse A, Vasseljen O. Neck motion, motor control, pain and disability: a longitudinal study of associations in neck pain patients in physiotherapy treatment. Man Ther. 2016;22:94–100. doi: 10.1016/j.math.2015.10.013.
    1. Bialosky JE, Beneciuk JM, Bishop MD, Coronado RA, Penza CW, Simon CB, et al. Unraveling the mechanisms of manual therapy: modeling an approach. J Orthop Sports Phys Ther. 2018;48(1):8–18. doi: 10.2519/jospt.2018.7476.
    1. Bialosky JE, Bishop MD, Price DD, Robinson ME, George SZ. The mechanisms of manual therapy in the treatment of musculoskeletal pain: a comprehensive model. Man Ther. 2009;14(5):531–538. doi: 10.1016/j.math.2008.09.001.
    1. Hage R, Detrembleur C, Dierick F, Pitance L, Jojczyk L, Estievenart W, et al. DYSKIMOT: an ultra-low-cost inertial sensor to assess head’s rotational kinematics in adults during the didren-laser test. Sensors. 2020;20(3). 10.3390/s20030833.
    1. Reid SA, Rivett DA, Katekar MG, Callister R. Comparison of mulligan sustained natural apophyseal glides and maitland mobilizations for treatment of cervicogenic dizziness: a randomized controlled trial. Phys Ther. 2014;94(4):466–476. doi: 10.2522/ptj.20120483.
    1. Tuttle N, Barrett R, Laakso L. Relation between changes in posteroanterior stiffness and active range of movement of the cervical spine following manual therapy treatment. Spine. 2008;33(19):E673–E679. doi: 10.1097/BRS.0b013e31817f93f9.
    1. Tuttle N, Hazle C. Spinal PA movements behave ‘as if’ there are limitations of local segmental mobility and are large enough to be perceivable by manual palpation: a synthesis of the literature. Musculoskelet Sci Pract. 2018;36:25–31. doi: 10.1016/j.msksp.2018.04.005.
    1. Lee KS, Lee JH. Effect of maitland mobilization in cervical and thoracic spine and therapeutic exercise on functional impairment in individuals with chronic neck pain. J Phys Ther Sci. 2017;29(3):531–535. doi: 10.1589/jpts.29.531.
    1. Vernon H. The Neck Disability Index: state-of-the-art, 1991-2008. J Manip Physiol Ther. 2008;31(7):491–502. doi: 10.1016/j.jmpt.2008.08.006.
    1. Cleland JA, Childs JD, Whitman JM. Psychometric properties of the neck disability index and numeric pain rating scale in patients with mechanical neck pain. Arch Phys Med Rehabil. 2008;89(1):69–74. doi: 10.1016/j.apmr.2007.08.126.
    1. Meisingset I, Woodhouse A, Stensdotter AK, Stavdahl O, Loras H, Gismervik S, et al. Evidence for a general stiffening motor control pattern in neck pain: a cross sectional study. BMC Musculoskelet Disord. 2015;16:56. doi: 10.1186/s12891-015-0517-2.
    1. Salaffi F, Stancati A, Silvestri CA, Ciapetti A, Grassi W. Minimal clinically important changes in chronic musculoskeletal pain intensity measured on a numerical rating scale. Eur J Pain. 2004;8(4):283–291. doi: 10.1016/j.ejpain.2003.09.004.
    1. Boonstra AM, Stewart RE, Köke AJ, Oosterwijk RF, Swaan JL, Schreurs KM, et al. Cut-off points for mild, moderate, and severe pain on the numeric rating scale for pain in patients with chronic musculoskeletal pain: variability and influence of sex and catastrophizing. Front Psychol. 2016;7:1466. doi: 10.3389/fpsyg.2016.01466.
    1. De Hertogh WJ, Vaes PH, Vijverman V, De Cordt A, Duquet W. The clinical examination of neck pain patients: the validity of a group of tests. Man Ther. 2007;12(1):50–55. doi: 10.1016/j.math.2006.02.007.
    1. Schneider GM, Jull G, Thomas K, Smith A, Emery C, Faris P, et al. Intrarater and interrater reliability of select clinical tests in patients referred for diagnostic facet joint blocks in the cervical spine. Arch Phys Med Rehabil. 2013;94(8):1628–1634. doi: 10.1016/j.apmr.2013.02.015.
    1. Schneider GM, Jull G, Thomas K, Smith A, Emery C, Faris P, et al. Derivation of a clinical decision guide in the diagnosis of cervical facet joint pain. Arch Phys Med Rehabil. 2014;95(9):1695–1701. doi: 10.1016/j.apmr.2014.02.026.
    1. Martel J, Dugas C, Lafond D, Descarreaux M. Validation of the French version of the Bournemouth Questionnaire. J Can Chiropractic Assoc. 2009;53(2):102–120.
    1. Chaory K, Fayad F, Rannou F, Lefevre-Colau MM, Fermanian J, Revel M, et al. Validation of the French version of the fear avoidance belief questionnaire. Spine. 2004;29(8):908–913. doi: 10.1097/00007632-200404150-00018.
    1. Vernon H, Mior S. The Neck Disability Index: a study of reliability and validity. J Manip Physiol Ther. 1991;14(7):409–415.
    1. Wlodyka-Demaille S, Poiraudeau S, Catanzariti JF, Rannou F, Fermanian J, Revel M. French translation and validation of 3 functional disability scales for neck pain. Arch Phys Med Rehabil. 2002;83(3):376–382. doi: 10.1053/apmr.2002.30623.
    1. Cleland JA, Fritz JM, Childs JD. Psychometric properties of the fear-avoidance beliefs questionnaire and tampa scale of kinesiophobia in patients with neck pain. Am J Phys Med Rehabil. 2008;87(2):109–117. doi: 10.1097/PHM.0b013e31815b61f1.
    1. Bolton JE, Humphreys BK, van Hedel HJ. Validity of weekly recall ratings of average pain intensity in neck pain patients. J Manip Physiol Ther. 2010;33(8):612–617. doi: 10.1016/j.jmpt.2010.08.009.
    1. Young Ia Pt D, Dunning JPDPT, Butts RPP, Mourad FPDPT, Cleland Ja Pt P. Reliability, construct validity, and responsiveness of the neck disability index and numeric pain rating scale in patients with mechanical neck pain without upper extremity symptoms. Physiother Theory Pract. 2019;35(12):1328–1335. doi: 10.1080/09593985.2018.1471763.
    1. Grant T, Niere K. Techniques used by manipulative physiotherapists in the management of headaches. Aust J Physiother. 2000;46(3):215–222. doi: 10.1016/s0004-9514(14)60330-5.
    1. Williamson A, Hoggart B. Pain: a review of three commonly used pain rating scales. J Clin Nurs. 2005;14(7):798–804. doi: 10.1111/j.1365-2702.2005.01121.x.
    1. Uthaikhup S, Sterling M, Jull G. Cervical musculoskeletal impairment is common in elders with headache. Man Ther. 2009;14(6):636–641. doi: 10.1016/j.math.2008.12.008.
    1. O'Leary S, Jull G, Kim M, Uthaikhup S, Vicenzino B. Training mode-dependent changes in motor performance in neck pain. Arch Phys Med Rehabil. 2012;93(7):1225–1233. doi: 10.1016/j.apmr.2012.02.018.
    1. Falla DL, Jull GA, Hodges PW. Patients with neck pain demonstrate reduced electromyographic activity of the deep cervical flexor muscles during performance of the craniocervical flexion test. Spine. 2004;29(19):2108–2114. doi: 10.1097/01.brs.0000141170.89317.0e.
    1. Reid D, Rebbeck T, McCarthy C. Clinical reasoning for complex cervical spine conditions. Int J Osteopathic Med. 2018;27:45–51. doi: 10.1016/j.ijosm.2017.09.002.
    1. Meisingset I, Stensdotter AK, Woodhouse A, Vasseljen O. Predictors for global perceived effect after physiotherapy in patients with neck pain: an observational study. Physiotherapy. 2018;104(4):400–407. doi: 10.1016/j.physio.2017.01.007.
    1. Shrout PE. Measurement reliability and agreement in psychiatry. Stat Methods Med Res. 1998;7(3):301–317. doi: 10.1177/096228029800700306.
    1. Weir JP. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res. 2005;19(1):231–240. doi: 10.1519/15184.1.
    1. Swait G, Rushton AB, Miall RC, Newell D. Evaluation of cervical proprioceptive function: optimizing protocols and comparison between tests in normal subjects. Spine. 2007;32(24):E692–E701. doi: 10.1097/BRS.0b013e31815a5a1b.
    1. Fritz CO, Morris PE, Richler JJ. Effect size estimates: current use, calculations, and interpretation. J Exp Psychol Gen. 2012;141(1):2–18. doi: 10.1037/a0024338.
    1. Sarig Bahat H, Sprecher E, Sela I, Treleaven J. Neck motion kinematics: an inter-tester reliability study using an interactive neck VR assessment in asymptomatic individuals. Eur Spine J. 2016. 10.1007/s00586-016-4388-5.
    1. Meijer OG, Kots YM, Edgerton VR. Low-dimensional control: tonus (1963) Mot Control. 2001;5(1):1–22. doi: 10.1123/mcj.5.1.1.
    1. Latash ML. The bliss (not the problem) of motor abundance (not redundancy) Exp Brain Res. 2012;217(1):1–5. doi: 10.1007/s00221-012-3000-4.
    1. Profeta VLS, Turvey MT. Bernstein’s levels of movement construction: a contemporary perspective. Hum Mov Sci. 2018;57:111–133. doi: 10.1016/j.humov.2017.11.013.
    1. Todorov E. Optimality principles in sensorimotor control. Nat Neurosci. 2004;7(9):907–915. doi: 10.1038/nn1309.
    1. de Zoete RMJ, Osmotherly PG, Rivett DA, Snodgrass SJ. No differences between individuals with chronic idiopathic neck pain and asymptomatic individuals on 7 cervical sensorimotor control tests: a cross-sectional study. J Orthop Sports Phys Ther. 2020;50(1):33–43. doi: 10.2519/jospt.2020.8846.
    1. Riemann BL, Lephart SM. The sensorimotor system, part I: the physiologic basis of functional joint stability. J Athl Train. 2002;37(1):71–79.
    1. Panjabi MM. The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. J Spinal Disord. 1992;5(4):383–389. doi: 10.1097/00002517-199212000-00001.
    1. Zhang J, Rowe JB. Dissociable mechanisms of speed-accuracy tradeoff during visual perceptual learning are revealed by a hierarchical drift-diffusion model. Front Neurosci. 2014;8:69. doi: 10.3389/fnins.2014.00069.
    1. Heitz RP. The speed-accuracy tradeoff: history, physiology, methodology, and behavior. Front Neurosci. 2014;8:150. doi: 10.3389/fnins.2014.00150.
    1. Descarreaux M, Passmore SR, Cantin V. Head movement kinematics during rapid aiming task performance in healthy and neck-pain participants: the importance of optimal task difficulty. Man Ther. 2010;15(5):445–450. doi: 10.1016/j.math.2010.02.009.
    1. Passmore SR, Burke JR, Good C, Lyons JL, Dunn AS. Spinal manipulation impacts cervical spine movement and fitts’ task performance: a single-blind randomized before-after trial. J Manip Physiol Ther. 2010;33(3):189–192. doi: 10.1016/j.jmpt.2010.01.007.
    1. Treleaven J, Clamaron-Cheers C, Jull G. Does the region of pain influence the presence of sensorimotor disturbances in neck pain disorders? Man Ther. 2011;16(6):636–640. doi: 10.1016/j.math.2011.07.008.
    1. Satpute K, Nalband S, Hall T. The C0-C2 axial rotation test: normal values, intra- and inter-rater reliability and correlation with the flexion rotation test in normal subjects. J Man Manip Ther. 2019;27(2):92–98. doi: 10.1080/10669817.2018.1533195.
    1. Haavik H, Murphy B. Subclinical neck pain and the effects of cervical manipulation on elbow joint position sense. J Manip Physiol Ther. 2011;34(2):88–97. doi: 10.1016/j.jmpt.2010.12.009.
    1. Palmgren PJ, Sandstrom PJ, Lundqvist FJ, Heikkila H. Improvement after chiropractic care in cervicocephalic kinesthetic sensibility and subjective pain intensity in patients with nontraumatic chronic neck pain. J Manip Physiol Ther. 2006;29(2):100–106. doi: 10.1016/j.jmpt.2005.12.002.
    1. Sasieni P, Castanon A, Cuzick J. Effectiveness of cervical screening with age: population based case-control study of prospectively recorded data. BMJ. 2009;339:b2968. doi: 10.1136/bmj.b2968.
    1. Bootsma JM, Hortobagyi T, Rothwell JC, Caljouw SR. The role of task difficulty in learning a visuomotor skill. Med Sci Sports Exerc. 2018;50(9):1842–1849. doi: 10.1249/MSS.0000000000001635.

Source: PubMed

3
Subscribe