Virulence Genes among Enterococcus faecalis and Enterococcus faecium Isolated from Coastal Beaches and Human and Nonhuman Sources in Southern California and Puerto Rico

Donna M Ferguson, Ginamary Negrón Talavera, Luis A Ríos Hernández, Stephen B Weisberg, Richard F Ambrose, Jennifer A Jay, Donna M Ferguson, Ginamary Negrón Talavera, Luis A Ríos Hernández, Stephen B Weisberg, Richard F Ambrose, Jennifer A Jay

Abstract

Most Enterococcus faecalis and E. faecium are harmless to humans; however, strains harboring virulence genes, including esp, gelE, cylA, asa1, and hyl, have been associated with human infections. E. faecalis and E. faecium are present in beach waters worldwide, yet little is known about their virulence potential. Here, multiplex PCR was used to compare the distribution of virulence genes among E. faecalis and E. faecium isolated from beaches in Southern California and Puerto Rico to isolates from potential sources including humans, animals, birds, and plants. All five virulence genes were found in E. faecalis and E. faecium from beach water, mostly among E. faecalis. gelE was the most common among isolates from all source types. There was a lower incidence of asa1, esp, cylA, and hyl genes among isolates from beach water, sewage, septage, urban runoff, sea wrack, and eelgrass as compared to human isolates, indicating that virulent strains of E. faecalis and E. faecium may not be widely disseminated at beaches. A higher frequency of asa1 and esp among E. faecalis from dogs and of asa1 among birds (mostly seagull) suggests that further studies on the distribution and virulence potential of strains carrying these genes may be warranted.

Figures

Figure 1
Figure 1
Distribution of virulence factor genes among E. faecalis isolates from environmental, animal, and human sources in Puerto Rico (PR) and Southern California (SC).
Figure 2
Figure 2
Distribution of virulence factor genes among E. faecium isolates from environmental, animal, and human sources in Puerto Rico (PR) and Southern California (SC).

References

    1. Byappanahalli M. N., Nevers M. B., Korajkic A., Staley Z. R., Harwood V. J. Enterococci in the environment. Microbiology and Molecular Biology Reviews. 2012;76(4):685–706. doi: 10.1128/mmbr.00023-12.
    1. Murray B. E. The life and times of the enterococcus. Clinical Microbiology Reviews. 1990;3(1):46–65.
    1. Jett B. D., Huycke M. M., Gilmore M. S. Virulence of enterococci. Clinical Microbiology Reviews. 1994;7(4):462–478.
    1. Arias C. A., Panesso D., Singh K. V., Rice L. B., Murray B. E. Cotransfer of antibiotic resistance genes and a hyl Efm-containing virulence plasmid in Enterococcus faecium . Antimicrobial Agents and Chemotherapy. 2009;53(10):4240–4246. doi: 10.1128/AAC.00242-09.
    1. Willems R. J. L., van Schaik W. Transition of Enterococcus faecium from commensal organism to nosocomial pathogen. Future Microbiology. 2009;4(9):1125–1135. doi: 10.2217/fmb.09.82.
    1. Eaton T. J., Gasson M. J. Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Applied and Environmental Microbiology. 2001;67(4):1628–1635. doi: 10.1128/aem.67.4.1628-1635.2001.
    1. Coque T. M., Willems R., Cantón R., Del Campo R., Baquero F. High occurrence of esp among ampicillin-resistant and vancomycin-susceptible Enterococcus faecium clones from hospitalized patients. Journal of Antimicrobial Chemotherapy. 2002;50(6):1035–1038. doi: 10.1093/jac/dkf229.
    1. Rice L. B., Carias L., Rudin S., et al. A potential virulence gene, hyl Efm, predominates in Enterococcus faecium of clinical origin. The Journal of Infectious Diseases. 2003;187(3):508–512. doi: 10.1086/367711.
    1. Creti R., Imperi M., Bertuccini L., et al. Survey for virulence determinants among Enterococcus faecalis isolated from different sources. Journal of Medical Microbiology. 2004;53(1):13–20. doi: 10.1099/jmm.0.05353-0.
    1. Sheldon W. L., Macauley M. S., Taylor E. J., et al. Functional analysis of a group A streptococcal glycoside hydrolase Spy1600 from family 84 reveals it is a β-N-acetylglucosaminidase and not a hyaluronidase. Biochemical Journal. 2006;399(2):241–247. doi: 10.1042/bj20060307.
    1. Fisher K., Phillips C. The ecology, epidemiology and virulence of Enterococcus . Microbiology. 2009;155(6):1749–1757. doi: 10.1099/mic.0.026385-0.
    1. Hammerum A. M. Enterococci of animal origin and their significance for public health. Clinical Microbiology and Infection. 2012;18(7):619–625. doi: 10.1111/j.1469-0691.2012.03829.x.
    1. Gilmore M. S., Coburn P. S., Nallapareddy S. R., Murray B. E. Enterococcus virulence. In: Gilmore M. S., Clewell D. B., Courvalin P., Dunny G. M., Murray B. E., Rice L. B., editors. The Enterococci: Pathogenesis, Molecular Biology, and Antibiotic Resistance. 2002. p. p. 325.
    1. Shankar V., Baghdayan A. S., Huycke M. M., Lindahl G., Gilmore M. S. Infection-derived Enterococcus faecalis strains are enriched in esp, a gene encoding a novel surface protein. Infection and Immunity. 1999;67(1):193–200.
    1. Coburn P. S., Baghdayan A. S., Dolan G. T., Shankar N. Horizontal transfer of virulence genes encoded on the Enterococcus faecalis pathogenicity island. Molecular Microbiology. 2007;63(2):530–544. doi: 10.1111/j.1365-2958.2006.05520.x.
    1. Manson J. M., Hancock L. E., Gilmore M. S. Mechanism of chromosomal transfer of Enterococcus faecalis pathogenicity island, capsule, antimicrobial resistance, and other traits. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(27):12269–12274. doi: 10.1073/pnas.1000139107.
    1. Di Cesare A., Pasquaroli S., Vignaroli C., et al. The marine environment as a reservoir of enterococci carrying resistance and virulence genes strongly associated with clinical strains. Environmental Microbiology Reports. 2014;6(2):184–190. doi: 10.1111/1758-2229.12125.
    1. Bonilla T. D., Nowosielski K., Esiobu N., McCorquodale D. S., Rogerson A. Species assemblages of Enterococcus indicate potential sources of fecal bacteria at a south Florida recreational beach. Marine Pollution Bulletin. 2006;52(7):807–810. doi: 10.1016/j.marpolbul.2006.03.004.
    1. Badgley B. D., Thomas F. I. M., Harwood V. J. The effects of submerged aquatic vegetation on the persistence of environmental populations of Enterococcus spp. Environmental Microbiology. 2010;12(5):1271–1281. doi: 10.1111/j.1462-2920.2010.02169.x.
    1. Ferguson D. M., Griffith J. F., McGee C. D., Weisberg S. B., Hagedorn C. Comparison of enterococcus species diversity in marine water and wastewater using enterolert and EPA method 1600. Journal of Environmental and Public Health. 2013;2013:6. doi: 10.1155/2013/848049.848049
    1. Ran Q., Badgley B. D., Dillon N., Dunny G. M., Sadowsky M. J. Occurrence, genetic diversity, and persistence of enterococci in a Lake Superior watershed. Applied and Environmental Microbiology. 2013;79(9):3067–3075. doi: 10.1128/aem.03908-12.
    1. Noble R. T., Weisberg S. B., Leecaster M. K., et al. Storm effects on regional beach water quality along the southern California shoreline. Journal of Water and Health. 2003;1(1):23–31.
    1. Reeves R. L., Grant S. B., Mrse R. D., Oancea C. M. C., Sanders B. F., Boehm A. B. Scaling and management of fecal indicator bacteria in runoff from a coastal urban watershed in Southern California. Environmental Science and Technology. 2004;38(9):2637–2648. doi: 10.1021/es034797g.
    1. Yamahara K. M., Walters S. P., Boehm A. B. Growth of enterococci in unaltered, unseeded beach sands subjected to tidal wetting. Applied and Environmental Microbiology. 2009;75(6):1517–1524. doi: 10.1128/AEM.02278-08.
    1. Imamura G. J., Thompson R. S., Boehm A. B., Jay J. A. Wrack promotes the persistence of fecal indicator bacteria in marine sands and seawater. FEMS Microbiology Ecology. 2011;77(1):40–49. doi: 10.1111/j.1574-6941.2011.01082.x.
    1. Choi S., Chu W., Brown J., Becker S. J., Harwood V. J., Jiang S. C. Application of enterococci antibiotic resistance patterns for contamination source identification at Huntington Beach, California. Marine Pollution Bulletin. 2003;46(6):748–755. doi: 10.1016/S0025-326X(03)00046-8.
    1. Novais C., Coque T. M., Ferreira H., Sousa J. C., Peixe L. Environmental contamination with vancomycin-resistant enterococci from hospital sewage in Portugal. Applied and Environmental Microbiology. 2005;71:3364–3368.
    1. Roberts M. C., Soge O. O., Giardino M. A., Mazengia E., Ma G., Meschke J. S. Vancomycin-resistant Enterococcus spp. in marine environments from the West Coast of the USA. Journal of Applied Microbiology. 2009;107(1):300–307. doi: 10.1111/j.1365-2672.2009.04207.x.
    1. Moore D. F., Guzman J. A., McGee C. Species distribution and antimicrobial resistance of enterococci isolated from surface and ocean water. Journal of Applied Microbiology. 2008;105(4):1017–1025. doi: 10.1111/j.1365-2672.2008.03828.x.
    1. Rathnayake I., Hargreaves M., Huygens F. SNP diversity of Enterococcus faecalis and Enterococcus faecium in a South East Queensland waterway, Australia, and associated antibiotic resistance gene profiles. BMC Microbiology. 2011;11, article 201 doi: 10.1186/1471-2180-11-201.
    1. Ferguson D. M., Weisberg S. B., Hagedorn C., et al. Enterococcus growth on eelgrass (Zostera marina); Implications for water quality. FEMS Microbiology Ecology. 2016;92(4) doi: 10.1093/femsec/fiw047.
    1. Ferguson D. M., Moore D. F., Getrich M. A., Zhowandai M. H. Enumeration and speciation of enterococci found in marine and intertidal sediments and coastal water in southern California. Journal of Applied Microbiology. 2005;99(3):598–608. doi: 10.1111/j.1365-2672.2005.02660.x.
    1. Ke D., Picard F. J., Martineau F., et al. Development of a PCR assay for rapid detection of enterococci . Journal of Clinical Microbiology. 1999;37(11):3497–3503.
    1. Vankerckhoven V., Van Autgaerden T., Vael C., et al. Development of a multiplex PCR for the detection of asaI, gelE, cylA, esp, and hyl genes in enterococci and survey for virulence determinants among european hospital isolates of Enterococcus faecium. Journal of Clinical Microbiology. 2004;42(10):4473–4479. doi: 10.1128/jcm.42.10.4473-4479.2004.
    1. Rathnayake I. U., Hargreaves M., Huygens F. Antibiotic resistance and virulence traits in clinical and environmental Enterococcus faecalis and Enterococcus faecium isolates. Systematic and Applied Microbiology. 2012;35(5):326–333. doi: 10.1016/j.syapm.2012.05.004.
    1. Upadhyaya G. P., Lingadevaru U. B., Lingegowda R. K. Comparative study among clinical and commensal isolates of Enterococcus faecalisfor presence of esp gene and biofilm production. The Journal of Infection in Developing Countries. 2011;5(5):365–369.
    1. Süßmuth S. D., Muscholl-Silberhorn A., Wirth R., Susa M., Marre R., Rozdzinski E. Aggregation substance promotes adherence, phagocytosis, and intracellular survival of Enterococcus faecalis within human macrophages and suppresses respiratory burst. Infection and Immunity. 2000;68(9):4900–4906. doi: 10.1128/iai.68.9.4900-4906.2000.
    1. Biendo M., Adjide C., Castelain S., et al. Molecular characterization of glycopeptide-resistant enterococci from hospitals of the picardy region (France) International Journal of Microbiology. 2010;2010:8. doi: 10.1155/2010/150464.150464
    1. Toledo-Arana A., Valle J., Solano C., et al. The enterococcal surface protein, Esp, is involved in Enterococcus faecalis biofilm formation. Applied and Environmental Microbiology. 2001;67(10):4538–4545. doi: 10.1128/aem.67.10.4538-4545.2001.
    1. Ghosh A., Dowd S. E., Zurek L. Dogs leaving the ICU carry a very large multi-drug resistant enterococcal population with capacity for biofilm formation and horizontal gene transfer. PLoS ONE. 2011;6(7) doi: 10.1371/journal.pone.0022451.e22451
    1. Kwon K. H., Hwang S. Y., Moon B. Y., et al. Occurrence of antimicrobial resistance and virulence genes, and distribution of enterococcal clonal complex 17 from animals and human beings in Korea. Journal of Veterinary Diagnostic Investigation. 2012;24(5):924–931. doi: 10.1177/1040638712455634.
    1. Poeta P., Costa D., Rodrigues J., Torres C. Detection of genes encoding virulence factors and bacteriocins in fecal enterococci of poultry in Portugal. Avian Diseases. 2006;50(1):64–68. doi: 10.1637/7394-061505R.1.
    1. Han D., Unno T., Jang J., et al. The occurrence of virulence traits among high-level aminoglycosides resistant Enterococcus isolates obtained from feces of humans, animals, and birds in South Korea. International Journal of Food Microbiology. 2011;144(3):387–392. doi: 10.1016/j.ijfoodmicro.2010.10.024.
    1. Abriouel H., Omar N. B., Molinos A. C., et al. Comparative analysis of genetic diversity and incidence of virulence factors and antibiotic resistance among enterococcal populations from raw fruit and vegetable foods, water and soil, and clinical samples. International Journal of Food Microbiology. 2008;123(1-2):38–49. doi: 10.1016/j.ijfoodmicro.2007.11.067.
    1. Ahmed W., Sidhu J. P. S., Toze S. Speciation and frequency of virulence genes of Enterococcus spp. isolated from rainwater tank samples in southeast Queensland, Australia. Environmental Science and Technology. 2012;46(12):6843–6850. doi: 10.1021/es300595g.
    1. McBride S. M., Fischetti V. A., LeBlanc D. J., Moellering R. C., Jr., Gilmore M. S. Genetic diversity among Enterococcus faecalis . PLoS ONE. 2007;2, article e582 doi: 10.1371/journal.pone.0000582.
    1. Franz C. M. A. P., Holzapfel W. H., Stiles M. E. Enterococci at the crossroads of food safety? International Journal of Food Microbiology. 1999;47(1-2):1–24. doi: 10.1016/s0168-1605(99)00007-0.
    1. Kühn I., Iversen A., Burman L. G., et al. Comparison of enterococcal populations in animals, humans, and the environment —a European study. International Journal of Food Microbiology. 2003;88(2-3):133–145. doi: 10.1016/s0168-1605(03)00176-4.
    1. Kim E. B., Marco M. L. Non-clinical and clinical Enterococcus faecium but not Enterococcus faecalis have distinct structural and functional genomic features. Applied and Environmental Microbiology. 2013;80:154–165.
    1. Mundy L. M., Sahm D. F., Gilmore M. Relationships between enterococcal virulence and antimicrobial resistance. Clinical Microbiology Reviews. 2000;13(4):513–522. doi: 10.1128/cmr.13.4.513-522.2000.
    1. Arias C. A., Murray B. E. The rise of the Enterococcus: beyond vancomycin resistance. Nature Reviews Microbiology. 2012;10(4):266–278. doi: 10.1038/nrmicro2761.

Source: PubMed

3
Subscribe