A phase I/II trial of epirubicin and docetaxel in locally advanced breast cancer (LABC) on 2-weekly or 3-weekly schedules: NCIC CTG MA.22

Maureen Elizabeth Trudeau, Judith-Anne W Chapman, Baoqing Guo, Mark J Clemons, Rebecca A Dent, Roberta A Jong, Harriette J Kahn, Kathleen I Pritchard, Lei Han, Patti O'Brien, Lois E Shepherd, Amadeo M Parissenti, Maureen Elizabeth Trudeau, Judith-Anne W Chapman, Baoqing Guo, Mark J Clemons, Rebecca A Dent, Roberta A Jong, Harriette J Kahn, Kathleen I Pritchard, Lei Han, Patti O'Brien, Lois E Shepherd, Amadeo M Parissenti

Abstract

This phase I/II neoadjuvant trial (ClinicalTrials.gov identifier NCT00066443) determined maximally-tolerated doses (MTD), dose-limiting toxicities, response-to-therapy, and explored the role of novel response biomarkers. MA.22 accrued T3N0, any N2 or N3, and T4 breast cancer patients. Treatment was 6 cycles of 3-weekly (Schedule A; N = 47) or 8 cycles of 2-weekly (Schedule B; N = 46) epirubicin/docetaxel chemotherapy in sequential phase I/II studies, with growth factor support. In phase I of each schedule, MTDs were based on DLT. In phase II, clinical responses (CR/PR) and pathologic complete responses (pCR) were assessed. Tumor biopsy cores were obtained pre-, mid-, and post-treatment: 3 for pathologic assessment; 3 for microarray studies. DLT for Schedule A was febrile neutropenia at 105 mg/m(2) epirubicin and 75 mg/m(2) docetaxel; for schedule B, it was fatigue at 75 mg/m(2) for both agents. Phase II doses were 90 mg/m(2) epirubicin/75 mg/m(2) docetaxel for Schedule A and 60 mg/m(2) (both agents) for Schedule B. Schedule A CR/PR and pCR rates were 90 and 10 %, with large reductions in tumor RNA content and integrity following treatment; Schedule B results were 93 and 0 %, with smaller reductions in RNA quality. Pre-treatment expression of several genes was associated with clinical response, including those within a likely amplicon at 17q12 (ERBB2, TCAP, GSDMB, and PNMT). The combination regimens had acceptable toxicity, good clinical response, induction of changes in tumor RNA content and integrity. Pre-treatment expression of particular genes was associated with clinical responses, including several near 17q12, which with ERBB2, may better identify chemoresponsiveness.

Keywords: Docetaxel; Epirubicin; LABC; Microarray; Phase I/II; Response biomarkers.

Figures

Fig. 1
Fig. 1
CONSORT diagram
Fig. 2
Fig. 2
a Schedule A maximum RIN by dose level and treatment time. b Schedule B maximum RIN by dose level and treatment time. c Schedule A and B maximum RIN by dose level and treatment time
Fig. 3
Fig. 3
a Schedule A heat map of patient gene expression data. b Schedule B heat map of patient gene expression data

References

    1. Aigner J, Schneeweiss A, Sohn C, Marme F. The role of neoadjuvant chemotherapy in the management of primary breast cancer. Minerva Ginecol. 2011;63(3):261–274.
    1. Ammann JU, Cooke A, Trowsdale J. Butyrophilin Btn2a2 inhibits TCR activation and phosphatidylinositol 3-kinase/Akt pathway signaling and induces Foxp3 expression in T lymphocytes. J Immunol. 2013;190(10):5030–5036. doi: 10.4049/jimmunol.1203325.
    1. Araki T, Milbrandt J. Ninjurin2, a novel homophilic adhesion molecule, is expressed in mature sensory and enteric neurons and promotes neurite outgrowth. J Neurosci. 2000;20(1):187–195.
    1. Benusiglio PR, Pharoah PD, Smith PL, Lesueur F, Conroy D, Luben RN, Dew G, Jordan C, Dunning A, Easton DF, Ponder BA. HapMap-based study of the 17q21 ERBB2 amplicon in susceptibility to breast cancer. Br J Cancer. 2006;95(12):1689–1695. doi: 10.1038/sj.bjc.6603473.
    1. Biaoxue R, Xiling J, Shuanying Y, Wei Z, Xiguang C, Jinsui W, Min Z. Upregulation of Hsp90-beta and annexin A1 correlates with poor survival and lymphatic metastasis in lung cancer patients. J Exp Clin Cancer Res. 2012;31:70. doi: 10.1186/1756-9966-31-70.
    1. Boucquey M, De Plaen E, Locker M, Poliard A, Mouillet-Richard S, Boon T, Kellermann O. Noxp20 and Noxp70, two new markers of early neuronal differentiation, detected in teratocarcinoma-derived neuroectodermic precursor cells. J Neurochem. 2006;99(2):657–669. doi: 10.1111/j.1471-4159.2006.04093.x.
    1. Cagnoni G, Tamagnone L. Semaphorin receptors meet receptor tyrosine kinases on the way of tumor progression. Oncogene. 2014;33(40):4795–4802. doi: 10.1038/onc.2013.474.
    1. Campbell KA, Minashima T, Zhang Y, Hadley S, Lee YJ, Giovinazzo J, Quirno M, Kirsch T. Annexin A6 interacts with p65 and stimulates NF-kappaB activity and catabolic events in articular chondrocytes. Arthritis Rheum. 2013;65(12):3120–3129. doi: 10.1002/art.38182.
    1. Canadian Cancer Society, Statistics Canada, Public Health Agency of Canada, and Canadian Electronic Library (Firm), Canadian cancer statistics 2012 (2012) Canadian Cancer Society: Toronto, Ont. p. 1 electronic text (p 66)
    1. Carey LA, Winer EP. Defining success in neoadjuvant breast cancer trials. Lancet. 2014;384(9938):115–116. doi: 10.1016/S0140-6736(14)60034-9.
    1. Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F, Ollila DW, Sartor CI, Graham ML, Perou CM. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res. 2007;13(8):2329–2334. doi: 10.1158/1078-0432.CCR-06-1109.
    1. Chia S, Swain SM, Byrd DR, Mankoff DA. Locally advanced and inflammatory breast cancer. J Clin Oncol. 2008;26(5):786–790. doi: 10.1200/JCO.2008.15.0243.
    1. Coon JS, Marcus E, Gupta-Burt S, Seelig S, Jacobson K, Chen S, Renta V, Fronda G, Preisler HD. Amplification and overexpression of topoisomerase IIalpha predict response to anthracycline-based therapy in locally advanced breast cancer. Clin Cancer Res. 2002;8(4):1061–1067.
    1. Cortazar P, Zhang L, Untch M, Mehta K, Costantino JP, Wolmark N, Bonnefoi H, Cameron D, Gianni L, Valagussa P, Swain SM, Prowell T, Loibl S, Wickerham DL, Bogaerts J, Baselga J, Perou C, Blumenthal G, Blohmer J, Mamounas EP, Bergh J, Semiglazov V, Justice R, Eidtmann H, Paik S, Piccart M, Sridhara R, Fasching PA, Slaets L, Tang S, Gerber B, Geyer CE, Jr, Pazdur R, Ditsch N, Rastogi P, Eiermann W, von Minckwitz G. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet. 2014;384(9938):164–172. doi: 10.1016/S0140-6736(13)62422-8.
    1. Esserman LJ, Berry DA, DeMichele A, Carey L, Davis SE, Buxton M, Hudis C, Gray JW, Perou C, Yau C, Livasy C, Krontiras H, Montgomery L, Tripathy D, Lehman C, Liu MC, Olopade OI, Rugo HS, Carpenter JT, Dressler L, Chhieng D, Singh B, Mies C, Rabban J, Chen YY, Giri D, van ‘t Veer L, Hylton N. Pathologic complete response predicts recurrence-free survival more effectively by cancer subset: results from the I-SPY 1 TRIAL–CALGB 150007/150012, ACRIN 6657. J Clin Oncol. 2012;30(26):3242–3249. doi: 10.1200/JCO.2011.39.2779.
    1. Feng Y, Jiao W, Fu X, Chang Z. Stepwise disassembly and apparent nonstepwise reassembly for the oligomeric RbsD protein. Protein Sci. 2006;15(6):1441–1448. doi: 10.1110/ps.062175806.
    1. Gandhi S, Fletcher GG, Eisen A, Mates M, Freedman OC, Dent SF, Trudeau ME. Adjuvant chemotherapy for early female breast cancer: a systematic review of the evidence for the 2014 Cancer Care Ontario systemic therapy guideline. Curr Oncol. 2015;22(Suppl 1):S82–S94.
    1. Guarneri V, Broglio K, Kau SW, Cristofanilli M, Buzdar AU, Valero V, Buchholz T, Meric F, Middleton L, Hortobagyi GN, Gonzalez-Angulo AM. Prognostic value of pathologic complete response after primary chemotherapy in relation to hormone receptor status and other factors. J Clin Oncol. 2006;24(7):1037–1044. doi: 10.1200/JCO.2005.02.6914.
    1. Hergueta-Redondo M, Sarrio D, Molina-Crespo A, Megias D, Mota A, Rojo-Sebastian A, Garcia-Sanz P, Morales S, Abril S, Cano A, Peinado H, Moreno-Bueno G. Gasdermin-B promotes invasion and metastasis in breast cancer cells. PLoS ONE. 2014;9(3):e90099. doi: 10.1371/journal.pone.0090099.
    1. Hortobagyi GN, Buzdar AU, Strom EA, Ames FC, Singletary SE. Primary chemotherapy for early and advanced breast cancer. Cancer Lett. 1995;90(1):103–109. doi: 10.1016/0304-3835(94)03684-B.
    1. Houssami N, Macaskill P, von Minckwitz G, Marinovich ML, Mamounas E. Meta-analysis of the association of breast cancer subtype and pathologic complete response to neoadjuvant chemotherapy. Eur J Cancer. 2012;48(18):3342–3354. doi: 10.1016/j.ejca.2012.05.023.
    1. Inuzuka M, Hayakawa M, Ingi T. Serinc, an activity-regulated protein family, incorporates serine into membrane lipid synthesis. J Biol Chem. 2005;280(42):35776–35783. doi: 10.1074/jbc.M505712200.
    1. Katoh M. Evolutionary recombination hotspot around GSDML-GSDM locus is closely linked to the oncogenomic recombination hotspot around the PPP1R1B-ERBB2-GRB7 amplicon. Int J Oncol. 2004;24(4):757–763.
    1. Kauraniemi P, Kallioniemi A. Activation of multiple cancer-associated genes at the ERBB2 amplicon in breast cancer. Endocr Relat Cancer. 2006;13(1):39–49. doi: 10.1677/erc.1.01147.
    1. Kuerer HM, Newman LA, Smith TL, Ames FC, Hunt KK, Dhingra K, Theriault RL, Singh G, Binkley SM, Sneige N, Buchholz TA, Ross MI, McNeese MD, Buzdar AU, Hortobagyi GN, Singletary SE. Clinical course of breast cancer patients with complete pathologic primary tumor and axillary lymph node response to doxorubicin-based neoadjuvant chemotherapy. J Clin Oncol. 1999;17(2):460–469.
    1. Liedtke T, Schwamborn JC, Schroer U, Thanos S. Elongation of axons during regeneration involves retinal crystallin beta b2 (crybb2) Mol Cell Proteomics. 2007;6(5):895–907. doi: 10.1074/mcp.M600245-MCP200.
    1. Liu SV, Melstrom L, Yao K, Russell CA, Sener SF. Neoadjuvant therapy for breast cancer. J Surg Oncol. 2010;101(4):283–291. doi: 10.1002/jso.21446.
    1. Liu Y, Cheng H, Zhou Y, Zhu Y, Bian R, Chen Y, Li C, Ma Q, Zheng Q, Zhang Y, Jin H, Wang X, Chen Q, Zhu D. Myostatin induces mitochondrial metabolic alteration and typical apoptosis in cancer cells. Cell Death Dis. 2013;4:e494. doi: 10.1038/cddis.2013.31.
    1. Malik MF, Ye L, Jiang WG. The Plexin-B family and its role in cancer progression. Histol Histopathol. 2014;29(2):151–165.
    1. Marshall MJ, Neal FE, Goldberg DM. Isoenzymes of hexokinase, 6-phosphogluconate dehydrogenase, phosphoglucomutase and lactate dehydrogenase in uterine cancer. Br J Cancer. 1979;40(3):380–390. doi: 10.1038/bjc.1979.192.
    1. Mieog JS, van der Hage JA, van de Velde CJ. Neoadjuvant chemotherapy for operable breast cancer. Br J Surg. 2007;94(10):1189–1200. doi: 10.1002/bjs.5894.
    1. Nicholas G, Thomas M, Langley B, Somers W, Patel K, Kemp CF, Sharma M, Kambadur R. Titin-cap associates with, and regulates secretion of, Myostatin. J Cell Physiol. 2002;193(1):120–131. doi: 10.1002/jcp.10158.
    1. Parissenti AM, Chapman JA, Kahn HJ, Guo B, Han L, O’Brien P, Clemons MP, Jong R, Dent R, Fitzgerald B, Pritchard KI, Shepherd LE, Trudeau ME. Association of low tumor RNA integrity with response to chemotherapy in breast cancer patients. Breast Cancer Res Treat. 2010;119(2):347–356. doi: 10.1007/s10549-009-0531-x.
    1. Pritchard KI, Shepherd LE, O’Malley FP, Andrulis IL, Tu D, Bramwell VH, Levine MN. HER2 and responsiveness of breast cancer to adjuvant chemotherapy. N Engl J Med. 2006;354(20):2103–2111. doi: 10.1056/NEJMoa054504.
    1. Qiu Y, Zhang ZY, Du WD, Ye L, Xu S, Zuo XB, Zhou FS, Chen G, Ma XL, Schneider ME, Xia HZ, Zhou Y, Wu JF, Yuan-Hong X, Zhang XJ. Association analysis of ERBB2 amplicon genetic polymorphisms and STARD3 expression with risk of gastric cancer in the Chinese population. Gene. 2014;535(2):225–232. doi: 10.1016/j.gene.2013.11.030.
    1. Rauch T, Li H, Wu X, Pfeifer GP. MIRA-assisted microarray analysis, a new technology for the determination of DNA methylation patterns, identifies frequent methylation of homeodomain-containing genes in lung cancer cells. Cancer Res. 2006;66(16):7939–7947. doi: 10.1158/0008-5472.CAN-06-1888.
    1. Raza S, Welch S, Younus J. Relative dose intensity delivered to patients with early breast cancer: Canadian experience. Curr Oncol. 2009;16(6):8–12.
    1. Rouzier R, Perou CM, Symmans WF, Ibrahim N, Cristofanilli M, Anderson K, Hess KR, Stec J, Ayers M, Wagner P, Morandi P, Fan C, Rabiul I, Ross JS, Hortobagyi GN, Pusztai L. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res. 2005;11(16):5678–5685. doi: 10.1158/1078-0432.CCR-04-2421.
    1. Saeki N, Usui T, Aoyagi K, Kim DH, Sato M, Mabuchi T, Yanagihara K, Ogawa K, Sakamoto H, Yoshida T, Sasaki H. Distinctive expression and function of four GSDM family genes (GSDMA-D) in normal and malignant upper gastrointestinal epithelium. Genes Chromosom Cancer. 2009;48(3):261–271. doi: 10.1002/gcc.20636.
    1. Sakwe AM, Koumangoye R, Guillory B, Ochieng J. Annexin A6 contributes to the invasiveness of breast carcinoma cells by influencing the organization and localization of functional focal adhesions. Exp Cell Res. 2011;317(6):823–837. doi: 10.1016/j.yexcr.2010.12.008.
    1. Salzman J, Marinelli RJ, Wang PL, Green AE, Nielsen JS, Nelson BH, Drescher CW, Brown PO. ESRRA-C11orf20 is a recurrent gene fusion in serous ovarian carcinoma. PLoS Biol. 2011;9(9):e1001156. doi: 10.1371/journal.pbio.1001156.
    1. Sinclair S, Swain SM. Primary systemic chemotherapy for inflammatory breast cancer. Cancer. 2010;116(11 Suppl):2821–2828. doi: 10.1002/cncr.25166.
    1. Specht J, Gralow JR. Neoadjuvant chemotherapy for locally advanced breast cancer. Semin Radiat Oncol. 2009;19(4):222–228. doi: 10.1016/j.semradonc.2009.05.001.
    1. Staaf J, Jonsson G, Ringner M, Vallon-Christersson J, Grabau D, Arason A, Gunnarsson H, Agnarsson BA, Malmstrom PO, Johannsson OT, Loman N, Barkardottir RB, Borg A. High-resolution genomic and expression analyses of copy number alterations in HER2-amplified breast cancer. Breast Cancer Res. 2010;12(3):R25. doi: 10.1186/bcr2568.
    1. von Minckwitz G, Untch M, Blohmer JU, Costa SD, Eidtmann H, Fasching PA, Gerber B, Eiermann W, Hilfrich J, Huober J, Jackisch C, Kaufmann M, Konecny GE, Denkert C, Nekljudova V, Mehta K, Loibl S. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol. 2012;30(15):1796–1804. doi: 10.1200/JCO.2011.38.8595.
    1. Wang X, Chow R, Deng L, Anderson D, Weidner N, Godwin AK, Bewtra C, Zlotnik A, Bui J, Varki A, Varki N. Expression of Siglec-11 by human and chimpanzee ovarian stromal cells, with uniquely human ligands: implications for human ovarian physiology and pathology. Glycobiology. 2011;21(8):1038–1048. doi: 10.1093/glycob/cwr039.
    1. Yosten GL, Redlinger LJ, Samson WK. Evidence for an interaction of neuronostatin with the orphan G protein-coupled receptor, GPR107. Am J Physiol Regul Integr Comp Physiol. 2012;303(9):R941–R949. doi: 10.1152/ajpregu.00336.2012.
    1. Yuan J, Palioura S, Salazar JC, Su D, O’Donoghue P, Hohn MJ, Cardoso AM, Whitman WB, Soll D. RNA-dependent conversion of phosphoserine forms selenocysteine in eukaryotes and archaea. Proc Natl Acad Sci USA. 2006;103(50):18923–18927. doi: 10.1073/pnas.0609703104.
    1. Zhang Z, Xu X, Xiang Z, Yu Z, Feng J, He C. LINGO-1 receptor promotes neuronal apoptosis by inhibiting WNK3 kinase activity. J Biol Chem. 2013;288(17):12152–12160. doi: 10.1074/jbc.M112.447771.
    1. Zudaire E, Cuesta N, Murty V, Woodson K, Adams L, Gonzalez N, Martinez A, Narayan G, Kirsch I, Franklin W, Hirsch F, Birrer M, Cuttitta F. The aryl hydrocarbon receptor repressor is a putative tumor suppressor gene in multiple human cancers. J Clin Invest. 2008;118(2):640–650.

Source: PubMed

3
Subscribe