Protein-bound solute removal during extended multipass versus standard hemodialysis

Sunny Eloot, Wim Van Biesen, Mette Axelsen, Griet Glorieux, Robert Smith Pedersen, James Goya Heaf, Sunny Eloot, Wim Van Biesen, Mette Axelsen, Griet Glorieux, Robert Smith Pedersen, James Goya Heaf

Abstract

Background: Multipass hemodialysis (MPHD) is a recently described dialysis modality, involving the use of small volumes of dialysate which are repetitively recycled. Dialysis regimes of 8 hours for six days a week using this device result in an increased removal of small water soluble solutes and middle molecules compared to standard hemodialysis (SHD). Since protein-bound solutes (PBS) exert important pathophysiological effects, we investigated whether MPHD results in improved removal of PBS as well.

Methods: A cross-over study (Clinical Trial NCT01267760) was performed in nine stable HD patients. At midweek a single dialysis session was performed with either 4 hours SHD using a dialysate flow of 500 mL/min or 8 hours MPHD with a dialysate volume of 50% of estimated body water volume. Blood and dialysate samples were taken every hour to determine concentrations of p-cresylglucuronide (PCG), hippuric acid (HA), indole acetic acid (IAA), indoxyl sulfate (IS), and p-cresylsulfate (PCS). Dialyser extraction ratio, reduction ratio, and solute removal were calculated for these solutes.

Results: Already at 60 min after dialysis start, the extraction ratio in the hemodialyser was a factor 1.4-4 lower with MPHD versus SHD, resulting in significantly smaller reduction ratios and lower solute removal within a single session. Even when extrapolating our findings to 3 times 4 h SHD and 6 times 8 h MPHD per week, the latter modality was at best similar in terms of total solute removal for most protein-bound solutes, and worse for the highly protein-bound solutes IS and PCS. When efficiency was calculated as solute removal/litre of dialysate used, MPHD was found superior to SHD.

Conclusion: When high water consumption is a concern, a treatment regimen of 6 times/week 8 h MPHD might be an alternative for 3 times/week 4 h SHD, but at the expense of a lower total solute removal of highly protein-bound solutes.

Figures

Figure 1
Figure 1
Serum concentrations at different time points during standard hemodialysis SHD (squares - full line) and multipass hemodialysis MPHD (diamonds - dotted line) for p-cresylglucuronide (PCG -panel A), hippuric acid (HA - panel B), indole acetic acid (IAA - panel C), indoxyl sulfate (IS - panel D), and p-cresylsulfate (PCS - panel E). *P < 0.05 MPHD versus SHD. †P = 0.053 MPHD versus SHD.
Figure 2
Figure 2
Cumulative total solute removal (TSR) at different time points during standard hemodialysis SHD (squares - full line) and multipass hemodialysis MPHD (diamonds - dotted line) for p-cresylglucuronide (PCG - panel A), hippuric acid (HA - panel B), indole acetic acid (IAA - panel C), and indoxyl sulfate (IS - panel D), p-cresylsulfate (PCS - panel E). *P < 0.05 MPHD versus SHD.

References

    1. Ayus JC, Mizani MR, Achinger SG, Thadhani R, Go AS, Lee S. Effects of short daily versus conventional hemodialysis on left ventricular hypertrophy and inflammatory markers: a prospective, controlled study. J Am Soc Nephrol. 2005;16:2778–88. doi: 10.1681/ASN.2005040392.
    1. Chertow GM, Levin NW, Beck GJ, Depner TA, Eggers PW, Gassman JJ, et al. In-center hemodialysis six times per week versus three times per week. N Engl J Med. 2010;363:2287–300. doi: 10.1056/NEJMoa1001593.
    1. Culleton BF, Walsh M, Klarenbach SW, Mortis G, Scott-Douglas N, Quinn RR, et al. Effect of frequent nocturnal hemodialysis vs conventional hemodialysis on left ventricular mass and quality of life: a randomized controlled trial. JAMA. 2007;298:1291–9. doi: 10.1001/jama.298.11.1291.
    1. Eloot S, Van Biesen W, Dhondt A, Van de Wynkele H, Glorieux G, Verdonck P, et al. Impact of hemodialysis duration on the removal of uremic retention solutes. Kidney Int. 2008;73:765–70. doi: 10.1038/sj.ki.5002750.
    1. Eloot S, Van Biesen W, Dhondt A, De Smet R, Marescau B, De Deyn PP, et al. Impact of increasing haemodialysis frequency versus haemodialysis duration on removal of urea and guanidino compounds: a kinetic analysis. Nephrol Dial Transplant. 2009;24:2225–32. doi: 10.1093/ndt/gfp059.
    1. Hall YN, Larive B, Painter P, Kaysen GA, Lindsay RM, Nissenson AR, et al. Effects of six versus three times per week hemodialysis on physical performance, health, and functioning: Frequent Hemodialysis Network (FHN) randomized trials. Clin J Am Soc Nephrol. 2012;7:782–94. doi: 10.2215/CJN.10601011.
    1. Hanly PJ, Pierratos A. Improvement of sleep apnea in patients with chronic renal failure who undergo nocturnal hemodialysis. N Engl J Med. 2001;344:102–7. doi: 10.1056/NEJM200101113440204.
    1. Jaber BL, Schiller B, Burkart JM, Daoui R, Kraus MA, Lee Y, et al. Impact of short daily hemodialysis on restless legs symptoms and sleep disturbances. Clin J Am Soc Nephrol. 2011;6:1049–56. doi: 10.2215/CJN.10451110.
    1. Maduell F, Navarro V, Torregrosa E, Rius A, Dicenta F, Cruz MC, et al. Change from three times a week on-line hemodiafiltration to short daily on-line hemodiafiltration. Kidney Int. 2003;64:305–13. doi: 10.1046/j.1523-1755.2003.00043.x.
    1. McFarlane PA, Bayoumi AM, Pierratos A, Redelmeier DA. The quality of life and cost utility of home nocturnal and conventional in-center hemodialysis. Kidney Int. 2003;64:1004–11. doi: 10.1046/j.1523-1755.2003.00157.x.
    1. Ok E, Duman S, Asci G, Tumuklu M, Onen SO, Kayikcioglu M, et al. Comparison of 4- and 8-h dialysis sessions in thrice-weekly in-centre haemodialysis: a prospective, case-controlled study. Nephrol Dial Transplant. 2011;26:1287–96. doi: 10.1093/ndt/gfq724.
    1. Rocco MV, Lockridge RS, Jr, Beck GJ, Eggers PW, Gassman JJ, Greene T, et al. The effects of frequent nocturnal home hemodialysis: the Frequent Hemodialysis Network Nocturnal Trial. Kidney Int. 2011;80:1080–91. doi: 10.1038/ki.2011.213.
    1. Ting GO, Kjellstrand C, Freitas T, Carrie BJ, Zarghamee S. Long-term study of high-comorbidity ESRD patients converted from conventional to short daily hemodialysis. Am J Kidney Dis. 2003;42:1020–35. doi: 10.1016/j.ajkd.2003.07.020.
    1. Walsh M, Manns BJ, Klarenbach S, Tonelli M, Hemmelgarn B, Culleton B. The effects of nocturnal compared with conventional hemodialysis on mineral metabolism: A randomized-controlled trial. Hemodial Int. 2010;14:174–81. doi: 10.1111/j.1542-4758.2009.00418.x.
    1. Vanholder R, Eloot S, Van Biesen W, Lameire N. Less water for haemodialysis: is multiple pass the future pace to go? Nephrol Dial Transplant. 2013;28:1067–70. doi: 10.1093/ndt/gfs546.
    1. Eloot S, Dhondt A, Vierendeels J, De Wachter D, Verdonck P, Vanholder R. Temperature and concentration distribution within the Genius dialysate container. Nephrol Dial Transplant. 2007;22:2962–9. doi: 10.1093/ndt/gfm356.
    1. Fassbinder W. Experience with the GENIUS hemodialysis system. Kidney Blood Press Res. 2003;26:96–9. doi: 10.1159/000070990.
    1. Dhondt AW, Vanholder RC, De Smet RV, Claus SA, Waterloos MA, Glorieux GL, et al. Studies on dialysate mixing in the Genius single-pass batch system for hemodialysis therapy. Kidney Int. 2003;63:1540–7. doi: 10.1046/j.1523-1755.2003.00862.x.
    1. Clark WR, Turk JE., Jr The NxStage system one. Semin Dial. 2004;17:167–70. doi: 10.1111/j.0894-0959.2004.17220.x.
    1. Heaf JG, Axelsen M, Pedersen RS. Multipass haemodialysis: a novel dialysis modality. Nephrol Dial Transplant. 2013;28:1255–64. doi: 10.1093/ndt/gfs484.
    1. Santoro A, Mancini E, Bolzani R, Boggi R, Cagnoli L, Francioso A, et al. The effect of on-line high-flux hemofiltration versus low-flux hemodialysis on mortality in chronic kidney failure: a small randomized controlled trial. Am J Kidney Dis. 2008;52:507–18. doi: 10.1053/j.ajkd.2008.05.011.
    1. Vanholder R, De Smet R. Pathophysiologic effects of uremic retention solutes. J Am Soc Nephrol. 1999;10:1815–23.
    1. Vanholder R, Baurmeister U, Brunet P, Cohen G, Glorieux G, Jankowski J. A bench to bedside view of uremic toxins. J Am Soc Nephrol. 2008;19:863–70. doi: 10.1681/ASN.2007121377.
    1. Adijiang A, Goto S, Uramoto S, Nishijima F, Niwa T. Indoxyl sulphate promotes aortic calcification with expression of osteoblast-specific proteins in hypertensive rats. Nephrol Dial Transplant. 2008;23:1892–901. doi: 10.1093/ndt/gfm861.
    1. Bammens B, Evenepoel P, Keuleers H, Verbeke K, Vanrenterghem Y. Free serum concentrations of the protein-bound retention solute p-cresol predict mortality in hemodialysis patients. Kidney Int. 2006;69:1081–7. doi: 10.1038/sj.ki.5000115.
    1. Barreto FC, Barreto DV, Liabeuf S, Meert N, Glorieux G, Temmar M, et al. Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin J Am Soc Nephrol. 2009;4:1551–8. doi: 10.2215/CJN.03980609.
    1. Dou L, Bertrand E, Cerini C, Faure V, Sampol J, Vanholder R, et al. The uremic solutes p-cresol and indoxyl sulfate inhibit endothelial proliferation and wound repair. Kidney Int. 2004;65:442–51. doi: 10.1111/j.1523-1755.2004.00399.x.
    1. Liabeuf S, Barreto DV, Barreto FC, Meert N, Glorieux G, Schepers E, et al. Free p-cresylsulphate is a predictor of mortality in patients at different stages of chronic kidney disease. Nephrol Dial Transplant. 2010;25:1183–91. doi: 10.1093/ndt/gfp592.
    1. Meijers BK, Bammens B, De Moor B, Verbeke K, Vanrenterghem Y, Evenepoel P. Free p-cresol is associated with cardiovascular disease in hemodialysis patients. Kidney Int. 2008;73:1174–80. doi: 10.1038/ki.2008.31.
    1. Meijers BK, Van Kerckhoven S, Verbeke K, Dehaen W, Vanrenterghem Y, Hoylaerts MF, et al. The uremic retention solute p-cresyl sulfate and markers of endothelial damage. Am J Kidney Dis. 2009;54:891–901. doi: 10.1053/j.ajkd.2009.04.022.
    1. Niwa T, Takeda N, Tatematsu A, Maeda K. Accumulation of indoxyl sulfate, an inhibitor of drug-binding, in uremic serum as demonstrated by internal-surface reversed-phase liquid chromatography. Clin Chem. 1988;34:2264–7.
    1. Schepers E, Meert N, Glorieux G, Goeman J, der EJ V, Vanholder R. P-cresylsulphate, the main in vivo metabolite of p-cresol, activates leucocyte free radical production. Nephrol Dial Transplant. 2007;22:592–6. doi: 10.1093/ndt/gfl584.
    1. Yamamoto H, Tsuruoka S, Ioka T, Ando H, Ito C, Akimoto T, et al. Indoxyl sulfate stimulates proliferation of rat vascular smooth muscle cells. Kidney Int. 2006;69:1780–5. doi: 10.1038/sj.ki.5000340.
    1. Yu MA, Sanchez-Lozada LG, Johnson RJ, Kang DH. Oxidative stress with an activation of the renin-angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced endothelial dysfunction. J Hypertens. 2010;28:1234–42.
    1. Zoccali C, Maio R, Mallamaci F, Sesti G, Perticone F. Uric acid and endothelial dysfunction in essential hypertension. J Am Soc Nephrol. 2006;17:1466–71. doi: 10.1681/ASN.2005090949.
    1. Vanholder R, Hoefliger N, De SR, Ringoir S. Extraction of protein bound ligands from azotemic sera: comparison of 12 deproteinization methods. Kidney Int. 1992;41:1707–12. doi: 10.1038/ki.1992.244.
    1. Fagugli RM, De Smet R, Buoncristiani U, Lameire N, Vanholder R. Behavior of non-protein-bound and protein-bound uremic solutes during daily hemodialysis. Am J Kidney Dis. 2002;40:339–47. doi: 10.1053/ajkd.2002.34518.
    1. Odell RA, Slowiaczek P, Moran JE, Schindhelm K. Beta 2-microglobulin kinetics in end-stage renal failure. Kidney Int. 1991;39:909–19. doi: 10.1038/ki.1991.114.
    1. Stiller S, Xu XQ, Gruner N, Vienken J, Mann H. Validation of a two-pool model for the kinetics of beta2-microglobulin. Int J Artif Organs. 2002;25:411–20.
    1. Leypoldt JK, Cheung AK, Deeter RB. Rebound kinetics of beta2-microglobulin after hemodialysis. Kidney Int. 1999;56:1571–7. doi: 10.1046/j.1523-1755.1999.00669.x.
    1. Eloot S, Vanholder R. Kinetics of protein-bound solutes during hemodialysis. Int J Artif Organs. 2012;35(8):583.
    1. Vanholder R, Eloot S, Neirynck N, Van Biesen W. Home haemodialysis and uraemic toxin removal: does a happy marriage exist? Nat Rev Nephrol. 2012;8:579–88. doi: 10.1038/nrneph.2012.189.

Source: PubMed

3
Subscribe