Binding affinity and capacity for the uremic toxin indoxyl sulfate

Eric Devine, Detlef H Krieter, Marieke Rüth, Joachim Jankovski, Horst-Dieter Lemke, Eric Devine, Detlef H Krieter, Marieke Rüth, Joachim Jankovski, Horst-Dieter Lemke

Abstract

Protein binding prevents uremic toxins from removal by conventional extracorporeal therapies leading to accumulation in maintenance dialysis patients. Weakening of the protein binding may enhance the dialytic elimination of these toxins. In ultrafiltration and equilibrium dialysis experiments, different measures to modify the plasma binding affinity and capacity were tested: (i), increasing the sodium chloride (NaCl) concentration to achieve a higher ionic strength; (ii), increasing the temperature; and (iii), dilution. The effects on the dissociation constant K(D) and the protein bound fraction of the prototypical uremic toxin indoxyl sulfate (IS) in plasma of healthy and uremic individuals were studied. Binding of IS corresponded to one site binding in normal plasma. K(D) increased linearly with the NaCl concentration between 0.15 (K(D) = 13.2 ± 3.7 µM) and 0.75 M (K(D) = 56.2 ± 2.0 µM). Plasma dilution further reduced the protein bound toxin fraction by lowering the protein binding capacity of the plasma. Higher temperatures also decreased the protein bound fraction of IS in human plasma. Increasing the NaCl concentration was effective to weaken the binding of IS also in uremic plasma: the protein bound fraction decreased from 89% ± 3% to 81% ± 3% at 0.15 and 0.75 M NaCl, respectively. Dilution and increasing the ionic strength and temperature enhance the free fraction of IS allowing better removal of the substance during dialysis. Applied during clinical dialysis, this may have beneficial effects on the long-term outcome of maintenance dialysis patients.

Figures

Figure 1
Figure 1
Scatchard plot of the protein binding of indoxyl sulfate (AC) and corresponding binding curves (DF) in normal human plasma. Plasma was 1:2 diluted and incubated at 0.15 M NaCl (A,D) and 0.75 M NaCl (B,E). 1:10-diluted plasma was incubated only at 0.15 M NaCl (C,F). Each experiment was performed with plasma from three different donors (squares: donor 1, triangles: donor 2, crosses: donor 3, and circles: donor 4). Indoxyl sulfate bound to one high affinity binding site in normal plasma. Regression coefficients r2 were: (A) 0.95, 0.98, and 0.96; (B) 0.96, 0.89, and 0.97 for donors 1, 2, and 3, respectively; (C) 0.94, 0.92 and 0.75 for donors 1, 3 and 4, respectively. Regression coefficient r2 of the binding curves; (DF) was always 1.00.
Figure 2
Figure 2
Effect of the ionic strength on the dissociation constant KD (solid line) and the ratio KD/Bm (dotted line) for indoxyl sulfate in 1:2-diluted plasma. KD and KD/Bm correlate with the ionic strength according to KD = 71.2 × NaCl concentration + 5.1 and KD/Bm = 0.20 × NaCl concentration + 0.03, respectively. *p < 0.05 versus 0.15 M NaCl.
Figure 3
Figure 3
Effect of an increased NaCl concentration on the protein bound fraction of indoxyl sulfate in uremic (A); n = 15, free and bound native toxin concentrations) and healthy (B); n = 18 (3 different donors spiked with 6 different toxin concentrations), free and bound toxin concentrations) human plasma. Increasing ionic strength led to lower protein bound fractions of indoxyl sulfate in both uremic and normal plasma. *p < 0.05.
Figure 4
Figure 4
Theoretical course of the protein bound fraction as a function of KD/Bm for different toxin-protein ratios α according to Equation (1). α and KD/Bm were varied from 0.01 to 1 mol/mol and from 10−4 to 102 mol/mol, respectively. The binding curve corresponds to a single high-affinity binding site on protein.

References

    1. Niwa T. Uremic toxicity of indoxyl sulfate. Nagoya J. Med. Sci. 2010;72:1–11.
    1. Barreto F.C., Barreto D.V., Liabeuf S., Meert N., Glorieux G., Temmar M., Choukroun G., Vanholder R., Massy Z.A. Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin. J. Am. Soc. Nephrol. 2009;4:1551–1558. doi: 10.2215/CJN.03980609.
    1. Niwa T., Nomura T., Sugiyama S., Miyazaki T., Tsukushi S., Tsutsui S. The protein metabolite hypothesis, a model for the progression of renal failure: An oral adsorbent lowers indoxyl sulfate levels in undialyzed uremic patients. Kidney Int. Suppl. 1997;62:S23–S28.
    1. Wu I.W., Hsu K.H., Lee C.C., Sun C.Y., Hsu H.J., Tsai C.J., Tsen C.Y., Wang Y.C., Lin C.Y., Wu M.S. p-Cresyl sulphate and indoxyl sulphate predict progression of chronic kidney disease. Nephrol. Dial. Transplant. 2011;26:938–947. doi: 10.1093/ndt/gfq580.
    1. Liabeuf S., Barreto D.V., Barreto F.C., Meert N., Glorieux G., Schepers E., Temmar M., Choukroun G., Vanholder R., Massy Z.A. Free p-cresylsulphate is a predictor of mortality in patients at different stages of chronic kidney disease. Nephrol. Dial. Transplant. 2010;25:1183–1191. doi: 10.1093/ndt/gfp592.
    1. Otagiri M. A molecular functional study on the interactions of drugs with plasma proteins. Drug Metab. Pharmacokinet. 2005;20:309–323. doi: 10.2133/dmpk.20.309.
    1. Bhattacharya A.A., Curry S., Franks N.P. Binding of the general anesthetics propofol and halothane to human serum albumin. J. Biol. Chem. 2000;275:38731–38738. doi: 10.1074/jbc.M005460200.
    1. Takamura N., Maruyama T., Otagiri M. Effects of uremic toxins and fatty acids on serum protein binding of furosemide: Possible mechanism of the binding defect in uremia. Clin. Chem. 1997;43:2274–2280.
    1. Jourde-Chiche N., Dou L., Cerini C., Dignat-George F., Vanholder R., Brunet P. Protein-bound toxins—Update 2009. Semin. Dial. 2009;22:334–339. doi: 10.1111/j.1525-139X.2009.00576.x.
    1. Sakai T., Yamasaki K., Sako T., Kragh-Hansen U., Suenaga A., Otagiri M. Interaction mechanism between IS, a typical uremic toxin bound to site II, and ligands bound to site I of human serum albumin. Pharm. Res. 2001;18:520–524. doi: 10.1023/A:1011014629551.
    1. Sakai T., Takadate A., Otagiri M. Characterization of binding site of uremic toxins on human serum albumin. Biol. Pharm. Bull. 1995;18:1755–1761. doi: 10.1248/bpb.18.1755.
    1. Vanholder R., Hoefliger N., de Smet R., Ringoir S. Extraction of protein bound ligands from azotemic sera: Comparison of 12 deproteinization methods. Kidney Int. 1992;41:1707–1712. doi: 10.1038/ki.1992.244.
    1. Aoronov P.A., Luo F.J.G., Plummer N.S., Quan Z., Holmes S., Hostetter T.H., Meyer T.W. Colonic contribution to uremic solutes. J. Am. Soc. Nephrol. 2011;22:1769–1776. doi: 10.1681/ASN.2010121220.
    1. De Smet R., Dhondt A., Eloot S., Galli F., Waterloos M.A., Vanholder R. Effect of the super-flux cellulose triacetate dialyser membrane on the removal of non-protein-bound and protein-bound ureamic solutes. Nephrol. Dial. Transplant. 2007;22:2006–2012. doi: 10.1093/ndt/gfm065.
    1. Krieter D.H., Hackl A., Rodriguez A., Chenine L., Moragues H.L., Lemke H.D., Wanner C., Canaud B. Protein-bound uraemic toxin removal in haemodialysis and post-dilution haemofiltration. Nephrol. Dial. Transplant. 2010;25:212–218. doi: 10.1093/ndt/gfp437.
    1. Lesaffer G., de Smet R., Lameire N., Dhondt A., Duym P., Vanholder R. Intradialytic removal of protein-bound uraemic toxins role of solute characteristics and of dialyser membrane. Nephrol. Dial. Transplant. 2000;15:50–57.
    1. Liabeuf S., Drüeke T.B., Massy Z.A. Protein-bound uremic toxins: New insight from clinical studies. Toxins. 2011;3:911–919. doi: 10.3390/toxins3070911.
    1. Meert N., Eloot S., Waterloos M.A., van Landschoot M., Dhondt A., Glorieux G., Ledebo I., Vanholder R. Effective removal of protein-bound uraemic solutes by different convective strategies: A prospective trial. Nephrol. Dial. Transplant. 2009;24:562–570.
    1. Meijers B.K.I., de Loor H., Bammens B., Verbeke K., Vanrenterghem Y., Evenepoel P. p-Cresyl sulfate and indoxyl sulfate in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2009;4:1932–1938. doi: 10.2215/CJN.02940509.
    1. Sirich T.L., Luo F.J.G., Plummer N.S., Hostetter T.H., Meyer T.W. Selectively increasing the clearance of protein-bound uremic solutes. Nephrol. Dial. Transplant. 2012;27:1574–1579. doi: 10.1093/ndt/gfr691.
    1. Meyer T.W., Paettie J.W.T., Miller J.D., Dinh D.C., Recht N.S., Walther J.L., Hostetter T.H. Increasing the clearance of protein-bound solutes by addition of a sorbent to the dialysate. J. Am. Soc. Nephrol. 2007;18:868–874. doi: 10.1681/ASN.2006080863.
    1. Meyer T., Leeper E.C., Barlett D.W., Depner T.A., Zhao Lit Y., Robertson C.R., Hostetter T.H. Increasing dialysate flow and dialyzer mass transfer area coefficient to increase the clearance of protein-bound solutes. J. Am. Soc. Nephrol. 2004;15:1927–1935. doi: 10.1097/01.ASN.0000131521.62256.F0.
    1. Viaene L., Annaert P., de Loor H., Poesen R., Evenepoel P., Meijers B. Albumin is the main plasma binding protein for indoxyl sulfate and p-cresyl sulfate. Biopharm. Drug Dispos. 2013;34:165–175. doi: 10.1002/bdd.1834.
    1. Mozar A., Louvet L., Godin C., Mentaverri R., Brazier M., Kamel S., Massy Z.A. Indoxyl sulphate inhibits osteoclast differentiation and function. Nephrol. Dial. Transplant. 2012;27:2176–2181. doi: 10.1093/ndt/gfr647.
    1. Nii-Kono T., Iwasaki Y., Uchida M., Fujieda A., Hosokawa A., Motojima M., Yamato H., Kurokawa K., Fukagawa M. Indoxyl sulfate induces skeletal resistance to parathyroid hormone in cultured osteoblastic cells. Kidney Int. 2007;71:738–743. doi: 10.1038/sj.ki.5002097.
    1. Dou L., Bertrand E., Cerini C., Faure V., Sampol J., Vanholder R., Berland Y., Brunet P. The uremic solutes p-cresol and indoxyl sulfate inhibit endothelial proliferation and wound repair. Kidney Int. 2004;65:442–451. doi: 10.1111/j.1523-1755.2004.00399.x.
    1. Dou L., Jourde-Chiche N., Faure V., Cerini C., Berland Y., Dignat-George F., Brunet P. The uremic solute indoxyl sulfate induces oxidative stress in endothelial cells. J. Thromb. Haemost. 2007;5:1302–1308. doi: 10.1111/j.1538-7836.2007.02540.x.
    1. Klammt S., Wojak H.J., Mitzner A., Koball S., Rychly J., Reisinger E.C., Mitzner S. Albumin-binding capacity (ABiC) is reduced in patients with chronic kidney disease along with an accumulation of protein-bound uraemic toxins. Nephrol. Dial. Transplant. 2012;27:2377–2383. doi: 10.1093/ndt/gfr616.
    1. Urbani A., Lupisella S., Sirolli V., Bucci S., Amoroso L., Pavone B., Pieroni L., Sacchetta P., Bonomini M. Proteomic analysis of proteinadsorption capacity of different haemodialysis membranes. Mol. Biosyst. 2012;8:1029–1039. doi: 10.1039/c2mb05393d.
    1. Vanholder R., de Smet R., Glorieux G., Argilès A., Baurmeister U., Brunet P., Clark W., Cohen G., de Deyn P.P., Deppisch R., et al. Review on uremic toxins: Classification, concentration and interindividual variability. Kidney Int. 2003;63:1934–1943. doi: 10.1046/j.1523-1755.2003.00924.x.
    1. Duranton F., Cohen G., de Smet R., Rodriguez M., Jankowski J., Vanholder R., Argilès A. Normal and pathologic concentrations of uremic toxins. J. Am. Soc. Nephrol. 2012;23:1258–1270. doi: 10.1681/ASN.2011121175.
    1. Nishio T., Takamura N., Nishii R., Tokunaga J., Yoshimoto M., Kawai K. Influences of haemodialysis on the binding sites of human serum albumin: Possibility of an efficacious administration plan using binding inhibition. Nephrol. Dial. Transplant. 2008;23:2304–2310. doi: 10.1093/ndt/gfn002.
    1. Watanabe H., Noguchi T., Miyamoto Y., Kadowaki D., Kotani S., Nakajima M., Miyamura S., Ishima Y., Otagiri M., Maruyama T. Interaction between two sulfate-conjugated uremic toxins, p-cresyl sulfate and indoxyl sulfate, during binding with human serum albumin. Drug Metab. Dispos. 2012;40:1423–1428. doi: 10.1124/dmd.112.045617.
    1. Van der Vusse G.J. Albumin as fatty acid transporter. Drug Metab. Pharmacokinet. 2009;24:300–307. doi: 10.2133/dmpk.24.300.
    1. Banerjee T., Singh S.K., Kishore N. Binding of naproxen and amitriptyline to bovine serum albumin: Biophysical aspects. J. Phys. Chem. B. 2006;110:24147–24156. doi: 10.1021/jp062734p.
    1. Olsen H., Andersen A., Nordbo A., Kongsgaard U.E., Bormer O.P. Pharmaceutical-grade albumin: Impaired drug-binding capacity in vitro. BMC Clin. Pharmacol. 2004;4 doi: 10.1186/1472-6904-4-4.
    1. De Smet R., van Kaer J., van Vlem B., de Cubber A., Brunet P., Lameire N., Vanholder R. Toxicity of free p-cresol: A prospective and cross-sectional analysis. Clin. Chem. 2003;49:470–478. doi: 10.1373/49.3.470.
    1. Weisiger R.A., Ostrow J.D., Koehler R.K., Webster C.C., Mukerjee P., Pascolo L., Tiribelli C. Affinity of human serum albumin for bilirubin varies with albumin concentration and buffer composition. J. Biol. Chem. 2001;276:29953–29960.
    1. Bergé-Lefranc D., Chaspoul F., Calaf R., Charpiot P., Brunet P., Gallice P. Binding of p-cresylsulfate and p-cresol to human serum albumin studied by microcalorimetry. J. Phys. Chem. B. 2010;114:1661–1665. doi: 10.1021/jp9059517.
    1. Schwinn D.A., Schafer S.L. In: Anesthesia. Miller R.D., editor. Churchill Livingstone; London, UK: 2000. pp. 15–48.
    1. Meijers B.K.I., Bammens B., de Moor B., Verbeke K., Vanrenterghem Y., Evenepoel P. Free p-cresol is associated with cardiovascular disease in hemodialysis patients. Kidney Int. 2008;73:1174–1180. doi: 10.1038/ki.2008.31.
    1. De Smet R., van Kaer J., Liebich H., Lesaffer G., Verstraete A., Dhondt A., Duym P., Lameire N., Vanholder R. Heparin-induced release of protein-bound solutes during hemodialysis is an in vitro artifact. Clin. Chem. 2001;47:901–909.

Source: PubMed

3
Subscribe