Monitoring Radiotherapeutic Response in Prostate Cancer Patients Using High Throughput FTIR Spectroscopy of Liquid Biopsies

Dinesh K R Medipally, Thi Nguyet Que Nguyen, Jane Bryant, Valérie Untereiner, Ganesh D Sockalingum, Daniel Cullen, Emma Noone, Shirley Bradshaw, Marie Finn, Mary Dunne, Aoife M Shannon, John Armstrong, Fiona M Lyng, Aidan D Meade, Dinesh K R Medipally, Thi Nguyet Que Nguyen, Jane Bryant, Valérie Untereiner, Ganesh D Sockalingum, Daniel Cullen, Emma Noone, Shirley Bradshaw, Marie Finn, Mary Dunne, Aoife M Shannon, John Armstrong, Fiona M Lyng, Aidan D Meade

Abstract

Radiation therapy (RT) is used to treat approximately 50% of all cancer patients. However, RT causes a wide range of adverse late effects that can affect a patient's quality of life. There are currently no predictive assays in clinical use to identify patients at risk of normal tissue radiation toxicity. This study aimed to investigate the potential of Fourier transform infrared (FTIR) spectroscopy for monitoring radiotherapeutic response. Blood plasma was acquired from 53 prostate cancer patients at five different time points: prior to treatment, after hormone treatment, at the end of radiotherapy, two months post radiotherapy and eight months post radiotherapy. FTIR spectra were recorded from plasma samples at all time points and the data was analysed using MATLAB software. Discrimination was observed between spectra recorded at baseline versus follow up time points, as well as between spectra from patients showing minimal and severe acute and late toxicity using principal component analysis. A partial least squares discriminant analysis model achieved sensitivity and specificity rates ranging from 80% to 99%. This technology may have potential to monitor radiotherapeutic response in prostate cancer patients using non-invasive blood plasma samples and could lead to individualised patient radiotherapy.

Keywords: Fourier transform infrared spectroscopy; blood plasma; high throughput; prostate cancer; radiotherapy; toxicity.

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
Mean FTIR spectra of plasma from patients at baseline, post hormone treatment, post radiotherapy, two and eight months after radiotherapy. Spectra were baseline corrected and vector normalized. Major bands are highlighted.
Figure 2
Figure 2
Difference spectra of plasma from patients post hormone treatment, post radiotherapy, at two months follow up and at eight months follow up. Difference spectra were computed by subtracting the mean spectra of plasma from the patients at different treatment time points from their mean spectra at baseline. The shaded regions depict the spectral regions which are significantly different between each sample set using a two-tailed t-test with p < 0.001.
Figure 3
Figure 3
Difference spectra of plasma from patients post radiotherapy, at two months follow up and at eight months follow up. Difference spectra were computed by subtracting the mean spectra of plasma from the patients at post radiotherapy time points from their mean spectra post hormone treatment. The shaded regions depict the spectral regions which are significantly different between each sample set using a two-tailed t-test with p < 0.001.
Figure 4
Figure 4
PCA of plasma spectra from patients from baseline through therapy and up to eight months follow up. (A) Score plots are shown for patients at baseline (blue), post hormone (red), post radiotherapy (yellow), two months follow up (purple) and eight months follow up (green) (B) PC-1 and PC-2 loading plots for regions 1000–1800 cm−1 and 2800–3100 cm−1. Covariance ellipses (95% confidence) are shown for each class.
Figure 4
Figure 4
PCA of plasma spectra from patients from baseline through therapy and up to eight months follow up. (A) Score plots are shown for patients at baseline (blue), post hormone (red), post radiotherapy (yellow), two months follow up (purple) and eight months follow up (green) (B) PC-1 and PC-2 loading plots for regions 1000–1800 cm−1 and 2800–3100 cm−1. Covariance ellipses (95% confidence) are shown for each class.
Figure 5
Figure 5
Typical cross-validated sensitivity and specificity for a PLS-DA model developed on FTIR spectra of plasma from patients at baseline and post radiotherapy with increase in the number of latent variables included in the model (LVs).
Figure 6
Figure 6
Difference spectra of plasma from patients at baseline and patients suffering from grade 0–1 and grade 2+ acute (immediately after completion of radiotherapy) and late (at eight months post radiotherapy) toxicity. The shaded regions depict the spectral regions which are significantly different between each sample set using a two-tailed t-test with p < 0.001.
Figure 7
Figure 7
PCA for plasma spectra from patients showing acute grade 0–1 and acute grade 2+ toxicity. (A) Score plots are shown for patients showing acute grade 0–1 (blue) and acute grade 2+ toxicity (red). (B) PC-1 and PC-2 loading plots for regions 1000–1800 cm−1 and 2800–3100 cm−1. Covariance ellipses (95% confidence) are shown for each class.
Figure 8
Figure 8
PCA for plasma spectra from patients showing late grade 0−1 and late grade 2+ toxicity. (A) Score plots are shown for patients showing late grade 0−1 (blue) and late grade 2+ (red) toxicity. (B) PC-1 and PC-2 loading plots for regions 1000–1800 cm−1 and 2800–3100 cm−1. Covariance ellipses (95% confidence) are shown for each class.
Figure 9
Figure 9
Experimental protocol of high throughput (HT)-FTIR analysis of blood plasma samples from sample preparation to data analysis (reproduced from [23] with permission from The Royal Society of Chemistry). 3-fold dilution: dilution by volume of one part plasma to two parts physiological water.

References

    1. Ferlay J., Soerjomataram I., Dikshit R., Eser S., Mathers C., Rebelo M., Parkin D.M., Forman D., Bray F. Cancer Incidence and Mortality Worldwide: Sources, Methods and Major Patterns in GLOBOCAN 2012. Int. J. Cancer. 2015;136:E359–E386. doi: 10.1002/ijc.29210.
    1. Keyes M., Crook J., Morton G., Vigneault E., Usmani N., Morris W.J. Treatment Options for Localized Prostate Cancer. Can. Fam. Physician. 2013;59:1269–1274.
    1. Milecki P., Martenka P., Antczak A., Kwias Z. Radiotherapy Combined with Hormonal Therapy in Prostate Cancer: The State of the Art. Cancer Manag. Res. 2010;2:243–253. doi: 10.2147/CMAR.S8912.
    1. Chen R.C., Clark J.A., Talcott J.A. Individualizing Quality-of-Life Outcomes Reporting: How Localized Prostate Cancer Treatments Affect Patients with Different Levels of Baseline Urinary, Bowel, and Sexual Function. J. Clin. Oncol. 2009;27:3916–3922. doi: 10.1200/JCO.2008.18.6486.
    1. West C.M., Barnett G.C. Genetics and Genomics of Radiotherapy Toxicity: Towards Prediction. Genome Med. 2011 doi: 10.1186/gm268.
    1. Franken N.A., Rodermond H.M., Stap J., Haveman J., van Bree C. Clonogenic Assay of Cells in Vitro. Nat. Protoc. 2006;1:2315–2319. doi: 10.1038/nprot.2006.339.
    1. West C.M., Davidson S.E., Roberts S.A., Hunter R.D. Intrinsic Radiosensitivity and Prediction of Patient Response to Radiotherapy for Carcinoma of the Cervix. Br. J. Cancer. 1993;68:819–823. doi: 10.1038/bjc.1993.434.
    1. Streffer C., van Beuningen D., Gross E., Schabronath J., Eigler F.W., Rebmann A. Predictive Assays for the Therapy of Rectum Carcinoma. Radiother. Oncol. 1986;5:303–310. doi: 10.1016/S0167-8140(86)80179-7.
    1. Joiner M., Van der Kogel A. Basic Clinical Radiobiology. 4th ed. Hodder Arnold; London, UK: 2009.
    1. Baria K., Warren C., Roberts S.A., West C.M., Scott D. Chromosomal Radiosensitivity as a Marker of Predisposition to Common Cancers? Br. J. Cancer. 2001;84:892–896. doi: 10.1054/bjoc.2000.1701.
    1. Bourton E.C., Plowman P.N., Smith D., Arlett C.F., Parris C.N. Prolonged Expression of the γ-H2AX DNA Repair Biomarker Correlates with Excess Acute and Chronic Toxicity from Radiotherapy Treatment. Int. J. Cancer. 2011;129:2928–2934. doi: 10.1002/ijc.25953.
    1. Herskind C., Talbot C.J., Kerns S.L., Veldwijk M.R., Rosenstein B.S., West C.M.L. Radiogenomics: A Systems Biology Approach to Understanding Genetic Risk Factors for Radiotherapy Toxicity? Cancer Lett. 2016 doi: 10.1016/j.canlet.2016.02.035.
    1. Talbot C.J., Tanteles G.A., Barnett G.C., Burnet N.G., Chang-Claude J., Coles C.E., Davidson S., Dunning A.M., Mills J., Murray R.J.S., et al. A Replicated Association between Polymorphisms near TNFα and Risk for Adverse Reactions to Radiotherapy. Br. J. Cancer. 2012 doi: 10.1038/bjc.2012.290.
    1. Seibold P., Behrens S., Schmezer P., Helmbold I., Barnett G., Coles C., Yarnold J., Talbot C.J., Imai T., Azria D., et al. XRCC1 Polymorphism Associated with Late Toxicity after Radiation Therapy in Breast Cancer Patients. Int. J. Radiat. Oncol. Biol. Phys. 2015 doi: 10.1016/j.ijrobp.2015.04.011.
    1. Barnett G.C., Thompson D., Fachal L., Kerns S., Talbot C., Elliott R.M., Dorling L., Coles C.E., Dearnaley D.P., Rosenstein B.S., et al. A Genome Wide Association Study (GWAS) Providing Evidence of an Association between Common Genetic Variants and Late Radiotherapy Toxicity. Radiother. Oncol. 2014 doi: 10.1016/j.radonc.2014.02.012.
    1. Fachal L., Gómez-Caamaño A., Barnett G.C., Peleteiro P., Carballo A.M., Calvo-Crespo P., Kerns S.L., Sánchez-García M., Lobato-Busto R., Dorling L., et al. A Three-Stage Genome-Wide Association Study Identifies a Susceptibility Locus for Late Radiotherapy Toxicity at 2q24.1. Nat. Genet. 2014 doi: 10.1038/ng.3020.
    1. Kerns S.L., Dorling L., Fachal L., Bentzen S., Pharoah P.D.P., Barnes D.R., Gómez-Caamaño A., Carballo A.M., Dearnaley D.P., Peleteiro P., et al. Meta-Analysis of Genome Wide Association Studies Identifies Genetic Markers of Late Toxicity Following Radiotherapy for Prostate Cancer. EBioMedicine. 2016;10:150–163. doi: 10.1016/j.ebiom.2016.07.022.
    1. Easton D.F., Pooley K.A., Dunning A.M., Pharoah P.D.P., Thompson D., Ballinger D.G., Struewing J.P., Morrison J., Field H., Luben R., et al. Genome-Wide Association Study Identifies Novel Breast Cancer Susceptibility Loci. Nature. 2007 doi: 10.1038/nature05887.
    1. Mohlke K.L., Boehnke M., Abecasis G.R. Metabolic and Cardiovascular Traits: An Abundance of Recently Identified Common Genetic Variants. Hum. Mol. Genet. 2008 doi: 10.1093/hmg/ddn275.
    1. Easton D.F., Eeles R.A. Genome−Wide Association Studies in Cancer. Hum. Mol. Genet. 2008 doi: 10.1093/hmg/ddn287.
    1. Lettre G., Rioux J.D. Autoimmune Diseases: Insights from Genome-Wide Association Studies. Hum. Mol. Genet. 2008 doi: 10.1093/hmg/ddn246.
    1. Eeles R.A., Kote-Jarai Z., Giles G.G., Al Olama A.A., Guy M., Jugurnauth S.K., Mulholland S., Leongamornlert D.A., Edwards S.M., Morrison J., et al. Multiple Newly Identified Loci Associated with Prostate Cancer Susceptibility. Nat. Genet. 2008 doi: 10.1038/ng.90.
    1. Lacombe C., Untereiner V., Gobinet C., Zater M., Sockalingum G.D., Garnotel R. Rapid Screening of Classic Galactosemia Patients: A Proof-of-Concept Study Using High-Throughput FTIR Analysis of Plasma. Analyst. 2015;140:2280–2286. doi: 10.1039/C4AN01942C.
    1. Carmona P., Molina M., Calero M., Bermejo-Pareja F., Martínez-Martín P., Toledano A. Discrimination Analysis of Blood Plasma Associated with Alzheimer’s Disease Using Vibrational Spectroscopy. J. Alzheimers Dis. 2013;34:911–920. doi: 10.3233/JAD-122041.
    1. Scaglia E., Sockalingum G.D., Schmitt J., Gobinet C., Schneider N., Manfait M., Thiéfin G. Noninvasive Assessment of Hepatic Fibrosis in Patients with Chronic Hepatitis C Using Serum Fourier Transform Infrared Spectroscopy. Anal. Bioanal. Chem. 2011;401:2919–2925. doi: 10.1007/s00216-011-5402-8.
    1. Gajjar K., Trevisan J., Owens G., Keating P.J., Wood N.J., Stringfellow H.F., Martin-Hirsch P.L., Martin F.L. Fourier−Transform Infrared Spectroscopy Coupled with a Classification Machine for the Analysis of Blood Plasma or Serum: A Novel Diagnostic Approach for Ovarian Cancer. Analyst. 2013;138:3917–3926. doi: 10.1039/c3an36654e.
    1. Wan Q.S., Wang T., Zhang K.H. Biomedical Optical Spectroscopy for the Early Diagnosis of Gastrointestinal Neoplasms. Tumor Biol. 2017 doi: 10.1177/1010428317717984.
    1. Elmi F., Movaghar A.F., Elmi M.M., Alinezhad H., Nikbakhsh N. Application of FT−IR Spectroscopy on Breast Cancer Serum Analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017 doi: 10.1016/j.saa.2017.06.021.
    1. Meade A.D., Clarke C., Byrne H.J., Lyng F.M. Fourier Transform Infrared Microspectroscopy and Multivariate Methods for Radiobiological Dosimetry. Radiat. Res. 2010 doi: 10.1667/RR1836.1.
    1. Meade A.D., Howe O., Unterreiner V., Sockalingum G.D., Byrne H.J., Lyng F.M. Vibrational Spectroscopy in Sensing Radiobiological Effects: Analyses of Targeted and Non−Targeted Effects in Human Keratinocytes. Faraday Discuss. 2016;187:213–234. doi: 10.1039/C5FD00208G.
    1. Meade A.D., Maguire A., Bryant J., Cullen D., Medipally D., White L., McClean B., Shields L., Armstrong J., Dunne M., et al. Prediction of DNA Damage and G2 Chromosomal Radio−Sensitivity Ex Vivo in Peripheral Blood Mononuclear Cells with Label-Free Raman Micro-Spectroscopy. Int. J. Radiat. Biol. 2018 doi: 10.1080/09553002.2018.1451006.
    1. Maziak D.E., Do M.T., Shamji F.M., Sundaresan S.R., Perkins D.G., Wong P.T.T. Fourier-Transform Infrared Spectroscopic Study of Characteristic Molecular Structure in Cancer Cells of Esophagus: An Exploratory Study. Cancer Detect. Prev. 2007 doi: 10.1016/j.cdp.2007.03.003.
    1. Staniszewska-Slezak E., Fedorowicz A., Kramkowski K., Leszczynska A., Chlopicki S., Baranska M., Malek K. Plasma Biomarkers of Pulmonary Hypertension Identified by Fourier Transform Infrared Spectroscopy and Principal Component Analysis. Analyst. 2015 doi: 10.1039/C4AN01864H.
    1. Bonnier F., Baker M.J., Byrne H.J. Vibrational Spectroscopic Analysis of Body Fluids: Avoiding Molecular Contamination Using Centrifugal Filtration. Anal. Methods. 2014 doi: 10.1039/c4ay00891j.
    1. Chisanga M., Muhamadali H., Ellis D.I., Goodacre R. Surface-Enhanced Raman Scattering (SERS) in Microbiology: Illumination and Enhancement of the Microbial World. Appl. Spectrosc. 2018 doi: 10.1177/0003702818764672.
    1. Saylor P.J., Smith M.R. Adverse Effects of Androgen Deprivation Therapy: Defining the Problem and Promoting Health among Men with Prostate Cancer. J. Natl. Compr. Cancer Netw. 2010;8:211–223. doi: 10.6004/jnccn.2010.0014.
    1. Roayaei M., Ghasemi S. Effect of Androgen Deprivation Therapy on Cardiovascular Risk Factors in Prostate Cancer. J. Res. Med. Sci. 2013;18:580–582.
    1. Keating N.L., Liu P.H., O’Malley A.J., Freedland S.J., Smith M.R. Androgen−Deprivation Therapy and Diabetes Control among Diabetic Men with Prostate Cancer. Eur. Urol. 2014 doi: 10.1016/j.eururo.2013.02.023.
    1. Wolny-Rokicka E., Tukiendorf A., Wydmański J., Brzezniakiewicz-Janus K., Zembroń-Łacny A. The Effect of Radiotherapy on the Concentration of Plasma Lipids in Elderly Prostate Cancer Patients. Am. J. Mens Heal. 2019;13 doi: 10.1177/1557988319846328.
    1. Kageyama S., Nihei K., Karasawa K., Sawada T., Koizumi F., Yamaguchi S., Kato S., Hojo H., Motegi A., Tsuchihara K., et al. Radiotherapy Increases Plasma Levels of Tumoral Cell−Free DNA in Non−Small Cell Lung Cancer Patients. Oncotarget. 2018;9:19368–19369. doi: 10.18632/oncotarget.25053.
    1. Jelonek K., Pietrowska M., Ros M., Zagdanski A., Suchwalko A., Polanska J., Marczyk M., Rutkowski T., Skladowski K., Clench M.R., et al. Radiation-Induced Changes in Serum Lipidome of Head and Neck Cancer Patients. Int. J. Mol. Sci. 2014;15:6609. doi: 10.3390/ijms15046609.
    1. Daly M.J. Death by Protein Damage in Irradiated Cells. DNA Repair. 2012;11:12–21. doi: 10.1016/j.dnarep.2011.10.024.
    1. Alicikus Z.A., Yamada Y., Zhang Z., Pei X., Hunt M., Kollmeier M., Cox B., Zelefsky M.J. Ten-Year Outcomes of High-Dose, Intensity-Modulated Radiotherapy for Localized Prostate Cancer. Cancer. 2011;117:1429–1437. doi: 10.1002/cncr.25467.
    1. Helm D., Labischinski H., Naumann D. Elaboration of a Procedure for Identification of Bacteria Using Fourier−Transform IR Spectral Libraries: A Stepwise Correlation Approach. J. Microbiol. Methods. 1991 doi: 10.1016/0167-7012(91)90042-O.
    1. Shaver J. Chemometrics for Raman Spectroscopy. In: Lewis I.R., Edwards H., editors. Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line. Marcel Dekker Inc.; New York, NY, USA: 2001. pp. 275–306.
    1. Opus 5 Reference Manual. Bruker OPTIK GmbH; Ettlingen, Germany: 2004.
    1. Savitzky A., Golay M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964 doi: 10.1021/ac60214a047.
    1. Krafft C., Steiner G., Beleites C., Salzer R. Disease Recognition by Infrared and Raman Spectroscopy. J. Biophotonics. 2009;2:13–28. doi: 10.1002/jbio.200810024.
    1. Meade A.D., Byrne H.J., Lyng F.M. Spectroscopic and Chemometric Approaches to Radiobiological Analyses. Mutat. Res. 2010;704:108–114. doi: 10.1016/j.mrrev.2010.01.010.
    1. Brereton R.G., Lloyd G.R. Partial Least Squares Discriminant Analysis: Taking the Magic Away. J. Chemom. 2014 doi: 10.1002/cem.2609.
    1. Wold S., Sjöström M., Eriksson L. PLS−Regression: A Basic Tool of Chemometrics. Chemom. Intell. Lab. Syst. 2001;58:109–130. doi: 10.1016/S0169-7439(01)00155-1.
    1. Gromski P.S., Muhamadali H., Ellis D.I., Xu Y., Correa E., Turner M.L., Goodacre R. A Tutorial Review: Metabolomics and Partial Least Squares−Discriminant Analysis—A Marriage of Convenience or a Shotgun Wedding. Anal. Chim. Acta. 2015 doi: 10.1016/j.aca.2015.02.012.
    1. Mehmood T., Martens H., Sæbø S., Warringer J., Snipen L. A Partial Least Squares Based Algorithm for Parsimonious Variable Selection. Algorithms Mol. Biol. 2011 doi: 10.1186/1748-7188-6-27.
    1. Krishnan A., Williams L.J., McIntosh A.R., Abdi H. Partial Least Squares (PLS) Methods for Neuroimaging: A Tutorial and Review. Neuroimage. 2011 doi: 10.1016/j.neuroimage.2010.07.034.
    1. Worley B., Halouska S., Powers R. Utilities for Quantifying Separation in PCA/PLS-DA Scores Plots. Anal. Biochem. 2013;433:102–104. doi: 10.1016/j.ab.2012.10.011.

Source: PubMed

3
Subscribe