HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials

Daniel I Swerdlow, David Preiss, Karoline B Kuchenbaecker, Michael V Holmes, Jorgen E L Engmann, Tina Shah, Reecha Sofat, Stefan Stender, Paul C D Johnson, Robert A Scott, Maarten Leusink, Niek Verweij, Stephen J Sharp, Yiran Guo, Claudia Giambartolomei, Christina Chung, Anne Peasey, Antoinette Amuzu, KaWah Li, Jutta Palmen, Philip Howard, Jackie A Cooper, Fotios Drenos, Yun R Li, Gordon Lowe, John Gallacher, Marlene C W Stewart, Ioanna Tzoulaki, Sarah G Buxbaum, Daphne L van der A, Nita G Forouhi, N Charlotte Onland-Moret, Yvonne T van der Schouw, Renate B Schnabel, Jaroslav A Hubacek, Ruzena Kubinova, Migle Baceviciene, Abdonas Tamosiunas, Andrzej Pajak, Roman Topor-Madry, Urszula Stepaniak, Sofia Malyutina, Damiano Baldassarre, Bengt Sennblad, Elena Tremoli, Ulf de Faire, Fabrizio Veglia, Ian Ford, J Wouter Jukema, Rudi G J Westendorp, Gert Jan de Borst, Pim A de Jong, Ale Algra, Wilko Spiering, Anke H Maitland-van der Zee, Olaf H Klungel, Anthonius de Boer, Pieter A Doevendans, Charles B Eaton, Jennifer G Robinson, David Duggan, DIAGRAM Consortium, MAGIC Consortium, InterAct Consortium, John Kjekshus, John R Downs, Antonio M Gotto, Anthony C Keech, Roberto Marchioli, Gianni Tognoni, Peter S Sever, Neil R Poulter, David D Waters, Terje R Pedersen, Pierre Amarenco, Haruo Nakamura, John J V McMurray, James D Lewsey, Daniel I Chasman, Paul M Ridker, Aldo P Maggioni, Luigi Tavazzi, Kausik K Ray, Sreenivasa Rao Kondapally Seshasai, JoAnn E Manson, Jackie F Price, Peter H Whincup, Richard W Morris, Debbie A Lawlor, George Davey Smith, Yoav Ben-Shlomo, Pamela J Schreiner, Myriam Fornage, David S Siscovick, Mary Cushman, Meena Kumari, Nick J Wareham, W M Monique Verschuren, Susan Redline, Sanjay R Patel, John C Whittaker, Anders Hamsten, Joseph A Delaney, Caroline Dale, Tom R Gaunt, Andrew Wong, Diana Kuh, Rebecca Hardy, Sekar Kathiresan, Berta A Castillo, Pim van der Harst, Eric J Brunner, Anne Tybjaerg-Hansen, Michael G Marmot, Ronald M Krauss, Michael Tsai, Josef Coresh, Ronald C Hoogeveen, Bruce M Psaty, Leslie A Lange, Hakon Hakonarson, Frank Dudbridge, Steve E Humphries, Philippa J Talmud, Mika Kivimäki, Nicholas J Timpson, Claudia Langenberg, Folkert W Asselbergs, Mikhail Voevoda, Martin Bobak, Hynek Pikhart, James G Wilson, Alex P Reiner, Brendan J Keating, Aroon D Hingorani, Naveed Sattar, Daniel I Swerdlow, David Preiss, Karoline B Kuchenbaecker, Michael V Holmes, Jorgen E L Engmann, Tina Shah, Reecha Sofat, Stefan Stender, Paul C D Johnson, Robert A Scott, Maarten Leusink, Niek Verweij, Stephen J Sharp, Yiran Guo, Claudia Giambartolomei, Christina Chung, Anne Peasey, Antoinette Amuzu, KaWah Li, Jutta Palmen, Philip Howard, Jackie A Cooper, Fotios Drenos, Yun R Li, Gordon Lowe, John Gallacher, Marlene C W Stewart, Ioanna Tzoulaki, Sarah G Buxbaum, Daphne L van der A, Nita G Forouhi, N Charlotte Onland-Moret, Yvonne T van der Schouw, Renate B Schnabel, Jaroslav A Hubacek, Ruzena Kubinova, Migle Baceviciene, Abdonas Tamosiunas, Andrzej Pajak, Roman Topor-Madry, Urszula Stepaniak, Sofia Malyutina, Damiano Baldassarre, Bengt Sennblad, Elena Tremoli, Ulf de Faire, Fabrizio Veglia, Ian Ford, J Wouter Jukema, Rudi G J Westendorp, Gert Jan de Borst, Pim A de Jong, Ale Algra, Wilko Spiering, Anke H Maitland-van der Zee, Olaf H Klungel, Anthonius de Boer, Pieter A Doevendans, Charles B Eaton, Jennifer G Robinson, David Duggan, DIAGRAM Consortium, MAGIC Consortium, InterAct Consortium, John Kjekshus, John R Downs, Antonio M Gotto, Anthony C Keech, Roberto Marchioli, Gianni Tognoni, Peter S Sever, Neil R Poulter, David D Waters, Terje R Pedersen, Pierre Amarenco, Haruo Nakamura, John J V McMurray, James D Lewsey, Daniel I Chasman, Paul M Ridker, Aldo P Maggioni, Luigi Tavazzi, Kausik K Ray, Sreenivasa Rao Kondapally Seshasai, JoAnn E Manson, Jackie F Price, Peter H Whincup, Richard W Morris, Debbie A Lawlor, George Davey Smith, Yoav Ben-Shlomo, Pamela J Schreiner, Myriam Fornage, David S Siscovick, Mary Cushman, Meena Kumari, Nick J Wareham, W M Monique Verschuren, Susan Redline, Sanjay R Patel, John C Whittaker, Anders Hamsten, Joseph A Delaney, Caroline Dale, Tom R Gaunt, Andrew Wong, Diana Kuh, Rebecca Hardy, Sekar Kathiresan, Berta A Castillo, Pim van der Harst, Eric J Brunner, Anne Tybjaerg-Hansen, Michael G Marmot, Ronald M Krauss, Michael Tsai, Josef Coresh, Ronald C Hoogeveen, Bruce M Psaty, Leslie A Lange, Hakon Hakonarson, Frank Dudbridge, Steve E Humphries, Philippa J Talmud, Mika Kivimäki, Nicholas J Timpson, Claudia Langenberg, Folkert W Asselbergs, Mikhail Voevoda, Martin Bobak, Hynek Pikhart, James G Wilson, Alex P Reiner, Brendan J Keating, Aroon D Hingorani, Naveed Sattar

Abstract

Background: Statins increase the risk of new-onset type 2 diabetes mellitus. We aimed to assess whether this increase in risk is a consequence of inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the intended drug target.

Methods: We used single nucleotide polymorphisms in the HMGCR gene, rs17238484 (for the main analysis) and rs12916 (for a subsidiary analysis) as proxies for HMGCR inhibition by statins. We examined associations of these variants with plasma lipid, glucose, and insulin concentrations; bodyweight; waist circumference; and prevalent and incident type 2 diabetes. Study-specific effect estimates per copy of each LDL-lowering allele were pooled by meta-analysis. These findings were compared with a meta-analysis of new-onset type 2 diabetes and bodyweight change data from randomised trials of statin drugs. The effects of statins in each randomised trial were assessed using meta-analysis.

Findings: Data were available for up to 223 463 individuals from 43 genetic studies. Each additional rs17238484-G allele was associated with a mean 0·06 mmol/L (95% CI 0·05-0·07) lower LDL cholesterol and higher body weight (0·30 kg, 0·18-0·43), waist circumference (0·32 cm, 0·16-0·47), plasma insulin concentration (1·62%, 0·53-2·72), and plasma glucose concentration (0·23%, 0·02-0·44). The rs12916 SNP had similar effects on LDL cholesterol, bodyweight, and waist circumference. The rs17238484-G allele seemed to be associated with higher risk of type 2 diabetes (odds ratio [OR] per allele 1·02, 95% CI 1·00-1·05); the rs12916-T allele association was consistent (1·06, 1·03-1·09). In 129 170 individuals in randomised trials, statins lowered LDL cholesterol by 0·92 mmol/L (95% CI 0·18-1·67) at 1-year of follow-up, increased bodyweight by 0·24 kg (95% CI 0·10-0·38 in all trials; 0·33 kg, 95% CI 0·24-0·42 in placebo or standard care controlled trials and -0·15 kg, 95% CI -0·39 to 0·08 in intensive-dose vs moderate-dose trials) at a mean of 4·2 years (range 1·9-6·7) of follow-up, and increased the odds of new-onset type 2 diabetes (OR 1·12, 95% CI 1·06-1·18 in all trials; 1·11, 95% CI 1·03-1·20 in placebo or standard care controlled trials and 1·12, 95% CI 1·04-1·22 in intensive-dose vs moderate dose trials).

Interpretation: The increased risk of type 2 diabetes noted with statins is at least partially explained by HMGCR inhibition.

Funding: The funding sources are cited at the end of the paper.

Copyright © 2015 Swerdlow et al. Open Access article distributed under the terms of CC BY. Published by Elsevier Ltd. All rights reserved.

Figures

Figure 1
Figure 1
Association of rs17238484 genotype with type-2 diabetes-related traits Association of the rs17238484 genotype with (A) major plasma lipids fractions; (B) plasma glucose and insulin; (C) BMI and bodyweight; (D) waist and hip circumference and waist:hip ratio; and (E) risk of type 2 diabetes. Bars are 95% CIs. BMI=body-mass index.
Figure 2
Figure 2
Meta-analyses of the associations of 3-hydroxy-3-methylglutaryl-CoA reductase variants rs17238484 and rs12916 with risk of type 2 diabetes Data were analysed by fixed-effects meta-analysis.
Figure 3
Figure 3
Effect of statin treatment on new-onset type 2 diabetes Data were analysed by random-effects meta-analysis. OR=odds ratio. Case=developed type 2 diabetes. Non-case=did not develop type 2 diabetes.
Figure 4
Figure 4
Effect of statin treatment on bodyweight Data were analysed by random-effects meta-analysis. In most trials, the total number of participants without type 2 diabetes at baseline for whom bodyweight data were available was smaller than the total number for whom data were available for the analysis of new-onset type 2 diabetes.

References

    1. Baigent C, Blackwell L, Emberson J. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170 000 participants in 26 randomised trials. Lancet. 2010;376:1670–1681.
    1. O'Regan C, Wu P, Arora P, Perri D, Mills EJ. Statin therapy in stroke prevention: a meta-analysis involving 121 000 patients. Am J Med. 2008;121:24–33.
    1. Cholesterol Treatment Trialists' (CTT) Collaborators The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet. 2012;380:581–590.
    1. Kearney PM, Blackwell L, Collins R. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet. 2008;371:117–125.
    1. National Center for Health Statistics . Health, United States 2010: with special feature on death and dying. National Center for Health Statistics; Hyattsville, MD: 2011.
    1. Pencina MJ, Navar-Boggan AM, D'Agostino RB., Sr Application of new cholesterol guidelines to a population-based sample. N Engl J Med. 2014;370:1422–1431.
    1. Sattar N, Preiss D, Murray HM. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet. 2010;375:735–742.
    1. Preiss D, Seshasai SRK, Welsh P. Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy: a meta-analysis. JAMA. 2011;305:2556–2564.
    1. US Food and Drug Administration FDA Drug Safety Communication: important safety label changes to cholesterol-lowering statin drugs. 2012. (accessed April 28, 2012).
    1. Carter AA, Gomes T, Camacho X, Juurlink DN, Shah BR, Mamdani MM. Risk of incident diabetes among patients treated with statins: population based study. BMJ. 2013;346:f2610.
    1. Navarese EP, Buffon A, Andreotti F. Meta-analysis of impact of different types and doses of statins on new-onset diabetes mellitus. Am J Cardiol. 2013;111:1123–1130.
    1. Danaei G, García Rodríguez LA, Fernandez Cantero O, Hernán MA. Statins and risk of diabetes: an analysis of electronic medical records to evaluate possible bias due to differential survival. Diabetes Care. 2013;36:1236–1240.
    1. Davignon J. Beneficial cardiovascular pleiotropic effects of statins. Circulation. 2004;109:III39–III43.
    1. Axsom K, Berger JS, Schwartzbard AZ. Statins and diabetes: the good, the bad, and the unknown. Curr Atheroscler Rep. 2013;15:299.
    1. Liao JK, Laufs U. Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol. 2005;45:89–118.
    1. Smith GD, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32:1–22.
    1. Hingorani A, Humphries S. Nature's randomised trials. Lancet. 2005;366:1906–1908.
    1. The Interleukin-6 Receptor Mendelian Randomisation Analysis (IL6R MR) Consortium The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. Lancet. 2012;379:1214–1224.
    1. Marmot MG, Smith GD, Stansfeld S. Health inequalities among British civil servants: the Whitehall II study. Lancet. 1991;337:1387–1393.
    1. Keating BJ, Tischfield S, Murray SS. Concept, design and implementation of a cardiovascular gene-centric 50 k SNP array for large-scale genomic association studies. PLoS One. 2008;3:e3583.
    1. Kathiresan S, Melander O, Guiducci C. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet. 2008;40:189–197.
    1. Willer CJ, Schmidt EM, Sengupta S. Discovery and refinement of loci associated with lipid levels. Nature Genet. 2013;45:1274–1283.
    1. Sheehan NA, Didelez V, Burton PR, Tobin MD. Mendelian randomisation and causal inference in observational epidemiology. PLoS Med. 2008;5:e177.
    1. ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group Major outcomes in moderately hypercholesterolemic, hypertensive patients randomized to pravastatin vs usual care: the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT-LLT) JAMA. 2002;288:2998–3007.
    1. De Lemos JA, Blazing MA, Wiviott SD. Early intensive vs a delayed conservative simvastatin strategy in patients with acute coronary syndromes: phase Z of the A to Z trial. JAMA. 2004;292:1307–1316.
    1. Kjekshus J, Apetrei E, Barrios V. Rosuvastatin in older patients with systolic heart failure. N Engl J Med. 2007;357:2248–2261.
    1. Amarenco P, Bogousslavsky J, Callahan A., 3rd High-dose atorvastatin after stroke or transient ischemic attack. N Engl J Med. 2006;355:549–559.
    1. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–560.
    1. Speliotes EK, Willer CJ, Berndt SI. Association analyses of 249 796 individuals reveal 18 new loci associated with body mass index. Nat Genet. 2010;42:937–948.
    1. Scott RA, Lagou V, Welch RP. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet. 2012;44:991–1005.
    1. Morris AP, Voight BF, Teslovich TM. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet. 2012;44:981–990.
    1. Voight BF, Kang HM, Ding J. The Metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropometric traits. PLoS Genet. 2012;8:e1002793.
    1. Holmes MV, Lange LA, Palmer T. Causal effects of body mass index on cardiometabolic traits and events: a mendelian randomization analysis. Am J Hum Genet. 2014;94:198–208.
    1. Koh KK, Quon MJ, Han SH, Lee Y, Kim SJ, Shin EK. Atorvastatin causes insulin resistance and increases ambient glycemia in hypercholesterolemic patients. J Am Coll Cardiol. 2010;55:1209–1216.
    1. Baker WL, Talati R, White CM, Coleman CI. Differing effect of statins on insulin sensitivity in non-diabetics: a systematic review and meta-analysis. Diabetes Res Clin Pract. 2010;87:98–107.
    1. Ridker PM, Danielson E, Fonseca FAH. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359:2195–2207.
    1. Sabatine MS, Wiviott SD, Morrow DA, McCabe C, Cannon CP. High-dose atorvastatin associated with worse glycemic control: a PROVE-IT TIMI 22 substudy. Circulation. 2004;110(suppl III):834.
    1. Holman RR, Paul S, Farmer A, Tucker L, Stratton IM, Neil HAW. Atorvastatin in Factorial with Omega-3 EE90 Risk Reduction in Diabetes (AFORRD): a randomised controlled trial. Diabetologia. 2009;52:50–59.
    1. Sattar N, Taskinen M-R. Statins are diabetogenic—myth or reality? Atheroscler Suppl. 2012;13:1–10.
    1. Ridker PM, Pradhan A, MacFadyen JG, Libby P, Glynn RJ. Cardiovascular benefits and diabetes risks of statin therapy in primary prevention: an analysis from the JUPITER trial. Lancet. 2012;380:565–571.

Source: PubMed

3
Subscribe