Ratios of central venous-to-arterial carbon dioxide content or tension to arteriovenous oxygen content are better markers of global anaerobic metabolism than lactate in septic shock patients

Jihad Mallat, Malcolm Lemyze, Mehdi Meddour, Florent Pepy, Gaelle Gasan, Stephanie Barrailler, Emmanuelle Durville, Johanna Temime, Nicolas Vangrunderbeeck, Laurent Tronchon, Benoît Vallet, Didier Thevenin, Jihad Mallat, Malcolm Lemyze, Mehdi Meddour, Florent Pepy, Gaelle Gasan, Stephanie Barrailler, Emmanuelle Durville, Johanna Temime, Nicolas Vangrunderbeeck, Laurent Tronchon, Benoît Vallet, Didier Thevenin

Abstract

Background: To evaluate the ability of the central venous-to-arterial CO2 content and tension differences to arteriovenous oxygen content difference ratios (∆ContCO2/∆ContO2 and ∆PCO2/∆ContO2, respectively), blood lactate concentration, and central venous oxygen saturation (ScvO2) to detect the presence of global anaerobic metabolism through the increase in oxygen consumption (VO2) after an acute increase in oxygen supply (DO2) induced by volume expansion (VO2/DO2 dependence).

Methods: We prospectively studied 98 critically ill mechanically ventilated patients in whom a fluid challenge was decided due to acute circulatory failure related to septic shock. Before and after volume expansion (500 mL of colloid solution), we measured cardiac index, VO2, DO2, ∆ContCO2/∆ContO2 and ∆PCO2/∆ContO2 ratios, lactate, and ScvO2. Fluid-responders were defined as a ≥15 % increase in cardiac index. Areas under the receiver operating characteristic curves (AUC) were determined for these variables.

Results: Fifty-one patients were fluid-responders (52 %). DO2 increased significantly (31 ± 12 %) in these patients. An increase in VO2 ≥ 15 % ("VO2-responders") concurrently occurred in 57 % of the 51 fluid-responders (45 ± 16 %). Compared with VO2-non-responders, VO2-responders were characterized by higher lactate levels and higher ∆ContCO2/∆ContO2 and ∆PCO2/∆ContO2 ratios. At baseline, lactate predicted a fluid-induced increase in VO2 ≥ 15 % with AUC of 0.745. Baseline ∆ContCO2/∆ContO2 and ∆PCO2/∆ContO2 ratios predicted an increase of VO2 ≥ 15 % with AUCs of 0.965 and 0.962, respectively. Baseline ScvO2 was not able to predict an increase of VO2 ≥ 15 % (AUC = 0.624).

Conclusions: ∆ContCO2/∆ContO2 and ∆PCO2/∆ContO2 ratios are more reliable markers of global anaerobic metabolism than lactate. ScvO2 failed to predict the presence of global tissue hypoxia.

Keywords: Acute circulatory failure; Anaerobic metabolism; Lactate; Oxygen consumption; Septic shock; Tissue hypoxia; Venous oxygen saturation; Venous-to-arterial carbon dioxide difference.

Figures

Fig. 1
Fig. 1
Flow chart showing the original 98 patients separated according to their response to volume expansion in terms of cardiac index, fluid responsiveness, and oxygen consumption (VO2)
Fig. 2
Fig. 2
Receiver operating characteristic (ROC) curves showing the ability of baseline ∆ContCO2/∆ContO2, ∆PCO2/∆ContO2, lactate, and ScvO2 to predict an increase in oxygen consumption of ≥15 % induced by volume expansion

References

    1. Sterling SA, Puskarich MA, Shapiro NI, Trzeciak S, Kline JA, Summers RL, et al. Characteristics and outcomes of patients with vasoplegic versus tissue dysoxic septic shock. Shock. 2013;40:11–14. doi: 10.1097/SHK.0b013e318298836d.
    1. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013;41:580–637. doi: 10.1097/CCM.0b013e31827e83af.
    1. James JH, Luchette FA, McCarter FD, Fischer JE. Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet. 1999;354:505–508. doi: 10.1016/S0140-6736(98)91132-1.
    1. Garcia-Alvarez M, Marik P, Bellomo R. Sepsis-associated hyperlactatemia. Crit Care. 2014;18:503. doi: 10.1186/s13054-014-0503-3.
    1. van Beest P, Wietasch G, Scheeren T, Spronk P, Kuiper M. Clinical review: use of venous oxygen saturations as a goal—a yet unfinished puzzle. Crit Care. 2011;15:232. doi: 10.1186/cc10351.
    1. Squara P. Central venous oxygenation: when physiology explains apparent discrepancies. Crit Care. 2014;18:579. doi: 10.1186/s13054-014-0579-9.
    1. Mekontso-Dessap A, Castelain V, Anguel N, Bahloul M, Schauvliege F, Richard C, et al. Combination of venoarterial PCO2 difference with the arteriovenous O2 content difference to detect anaerobic metabolism in patients. Intensive Care Med. 2002;28:272–277. doi: 10.1007/s00134-002-1215-8.
    1. Monnet X, Julien F, Ait-Hamou N, Lequoy M, Gosset C, Jozwiak M, et al. Lactate and venoarterial carbon dioxide difference/arterial–venous oxygen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders. Crit Care Med. 2013;41:1412–1420. doi: 10.1097/CCM.0b013e318275cece.
    1. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Intensive Care Med. 2003;29:530–538. doi: 10.1007/s00134-003-1662-x.
    1. Douglas AR, Jones NL, Reed JW. Calculation of whole blood CO2 content. J Appl Physiol. 1998;65:473–477.
    1. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–845. doi: 10.2307/2531595.
    1. Ray P, Le Manach Y, Riou B, Houle TT. Statistical evaluation of a biomarker. Anesthesiology. 2010;112:1023–1040. doi: 10.1097/ALN.0b013e3181d47604.
    1. Cain SM, Adams RP. Appearance of excess lactate in anesthetized dogs during anemic and hypoxic hypoxia. Am J Physiol. 1965;209:604–608.
    1. Schumacker PT, Cain SM. The concept of a critical oxygen delivery. Intensive Care Med. 1987;13:223–229. doi: 10.1007/BF00265110.
    1. Vincent JL, Roman A, De Backer D, Kahn RJ. Oxygen uptake/supply dependency: effects of short-term dobutamine infusion. Am J Respir Crit Care Med. 1990;142:2–8.
    1. Friedman G, De Backer D, Shahla M, Vincent JL. Oxygen supply dependency can characterize septic shock. Intensive Care Med. 1998;24:118–123. doi: 10.1007/s001340050531.
    1. Granton JT, Walley KR, Phang PT, Russell JA, Lichtenstein S. Assessment of three methods to reduce the influence of mathematical coupling on oxygen consumption and delivery relationships. Chest. 1998;113:1347–1355. doi: 10.1378/chest.113.5.1347.
    1. Hanique G, Dugernier T, Laterre PF, Dougnac A, Roeseler J, Reynaert MS. Significance of pathologic oxygen supply dependency in critically ill patients: comparison between measured and calculated methods. Intensive Care Med. 1994;20:12–18. doi: 10.1007/BF02425048.
    1. McCord J. Oxygen-derived free radicals in post ischemic tissue injury. N Engl J Med. 1985;312:159–161. doi: 10.1056/NEJM198501173120305.
    1. De Backer D, Moraine JJ, Berre J, Kahn RJ, Vincent JL. Effects of dobutamine on oxygen consumption in septic patients. Direct versus indirect determinations. Am J Respir Crit Care Med. 1994;150:95–100. doi: 10.1164/ajrccm.150.1.8025780.
    1. Groeneveld AB, Vermeij CG, Thijs LG. Arterial and mixed venous blood acid-base balance during hypoperfusion with incremental positive end-expiratory pressure in the pig. Anesth Analg. 1991;73:576–582.
    1. Cohen IL, Sheikh FM, Perkins RJ, Feustel PJ, Foster ED. Effect of hemorrhagic shock and reperfusion on the respiratory quotient in swine. Crit Care Med. 1995;23:545–552. doi: 10.1097/00003246-199503000-00021.
    1. Vallet B, Teboul JL, Cain S, Curtis S. Venoarterial CO(2) difference during regional ischemic or hypoxic hypoxia. J Appl Physiol. 2000;89:1317–1321.
    1. Cavaliere F, Giovannini I, Chiarla C, Conti G, Pennisi MA, Montini L, et al. Comparison of two methods to assess blood CO2 equilibration curve in mechanically ventilated patients. Respir Physiol Neurobiol. 2005;146:77–83. doi: 10.1016/j.resp.2004.11.008.
    1. Mchardy GJ. The relationship between the differences in pressure and content of carbon dioxide in arterial and venous blood. Clin Sci. 1967;32:299–309.
    1. Jakob SM, Kosonen P, Ruokonen E, Parviainen I, Takala J. The Haldane effect—an alternative explanation for increasing gastric mucosal PCO2 gradients? Br J Anaesth. 1999;83:740–746. doi: 10.1093/bja/83.5.740.
    1. Ospina-Tascón GA, Umaña M, Bermúdez W, Bautista-Rincón DF, Hernandez G, Bruhn A, et al. Combination of arterial lactate levels and venous–arterial CO2 to arterial–venous O2 content difference ratio as markers of resuscitation in patients with septic shock. Intensive Care Med. 2015;41:796–805. doi: 10.1007/s00134-015-3720-6.
    1. Mesquida J, Saludes P, Gruartmoner G, Espinal C, Torrents E, Baigorri F, et al. Central venous-to-arterial carbon dioxide difference combined with arterial-to-venous oxygen content difference is associated with lactate evolution in the hemodynamic resuscitation process in early septic shock. Crit Care. 2015;19:126. doi: 10.1186/s13054-015-0858-0.
    1. De Backer D. Lactic acidosis. Intensive Care Med. 2003;29:699–702.
    1. Gore DC, Jahoor F, Hibbert JM, DeMaria EJ. Lactic acidosis during sepsis is related to increased pyruvate production, not deficits in tissue oxygen availability. Ann Surg. 1996;224:97–102. doi: 10.1097/00000658-199607000-00015.
    1. Vary TC, Siegel JH, Nakatani T, Sato T, Aoyama H. Effect of sepsis on activity of pyruvate dehydrogenase complex in skeletal muscle and liver. Am J Physiol. 1986;250:E634–E640.
    1. Levraut J, Ciebiera JP, Chave S, Rabary O, Jambou P, Carles M, et al. Mild hyperlactatemia in stable septic patients is due to impaired lactate clearance rather than overproduction. Am J Respir Crit Care Med. 1998;157:1021–1026. doi: 10.1164/ajrccm.157.4.9705037.
    1. Curtis SE, Cain SM. Regional and systemic oxygen delivery/uptake relations and lactate flux in hyperdynamic, endotoxin-treated dogs. Am Rev Respir Dis. 1992;145:348–354. doi: 10.1164/ajrccm/145.2_Pt_1.348.
    1. Rimachi R, Bruzzi de Carvahlo F, Orellano-Jimenez C, Cotton F, Vincent JL, et al. Lactate/pyruvate ratio as a marker of tissue hypoxia in circulatory and septic shock. Anaesth Intensive Care. 2012;40:427–432.
    1. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–1377. doi: 10.1056/NEJMoa010307.
    1. Jansen TC, van Bommel J, Schoonderbeek FJ, Sleeswijk Visser SJ, van der Klooster JM, et al. Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled trial. Am J Respir Crit Care Med. 2010;182:752–761. doi: 10.1164/rccm.200912-1918OC.
    1. Chung KP, Chang HT, Huang YT, Liao CH, Ho CC, Jerng JS, et al. Central venous oxygen saturation under non-protocolized resuscitation is not related to survival in severe sepsis or septic shock. Shock. 2012;38:584–591. doi: 10.1097/SHK.0b013e318274c674.
    1. Boyd JH, Forbes J, Nakada TA, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39:259–265. doi: 10.1097/CCM.0b013e3181feeb15.

Source: PubMed

3
Subscribe