ACE2 gene variants may underlie interindividual variability and susceptibility to COVID-19 in the Italian population

Elisa Benetti, Rossella Tita, Ottavia Spiga, Andrea Ciolfi, Giovanni Birolo, Alessandro Bruselles, Gabriella Doddato, Annarita Giliberti, Caterina Marconi, Francesco Musacchia, Tommaso Pippucci, Annalaura Torella, Alfonso Trezza, Floriana Valentino, Margherita Baldassarri, Alfredo Brusco, Rosanna Asselta, Mirella Bruttini, Simone Furini, Marco Seri, Vincenzo Nigro, Giuseppe Matullo, Marco Tartaglia, Francesca Mari, GEN-COVID Multicenter Study, Alessandra Renieri, Anna Maria Pinto, Elisa Frullanti, Chiara Fallerini, Sergio Daga, Susanna Croci, Sara Amitrano, Francesca Fava, Francesca Montagnani, Laura Di Sarno, Andrea Tommasi, Maria Palmieri, Arianna Emiliozzi, Massimiliano Fabbiani, Barbara Rossetti, Giacomo Zanelli, Laura Bergantini, Miriana D'Alessandro, Paolo Cameli, David Bennet, Federico Anedda, Simona Marcantonio, Sabino Scolletta, Federico Franchi, Maria Antonietta Mazzei, Edoardo Conticini, Luca Cantarini, Bruno Frediani, Danilo Tacconi, Marco Feri, Raffaele Scala, Genni Spargi, Marta Corridi, Cesira Nencioni, Gian Piero Caldarelli, Maurizio Spagnesi, Paolo Piacentini, Maria Bandini, Elena Desanctis, Anna Canaccini, Chiara Spertilli, Alice Donati, Luca Guidelli, Leonardo Croci, Agnese Verzuri, Valentina Anemoli, Agostino Ognibene, Massimo Vaghi, Antonella D'Arminio Monforte, Esther Merlini, Mario U Mondelli, Stefania Mantovani, Serena Ludovisi, Massimo Girardis, Sophie Venturelli, Marco Sita, Andrea Cossarizza, Andrea Antinori, Alessandra Vergori, Stefano Rusconi, Matteo Siano, Arianna Gabrieli, Agostino Riva, Daniela Francisci, Elisabetta Schiaroli, Pier Giorgio Scotton, Francesca Andretta, Sandro Panese, Renzo Scaggiante, Saverio Giuseppe Parisi, Francesco Castelli, Maria Eugenia Quiros-Roldan, Paola Magro, Cristina Minardi, Deborah Castelli, Itala Polesini, Matteo Della Monica, Carmelo Piscopo, Mario Capasso, Roberta Russo, Immacolata Andolfo, Achille Iolascon, Massimo Carella, Marco Castori, Giuseppe Merla, Filippo Aucella, Pamela Raggi, Carmen Marciano, Rita Perna, Matteo Bassetti, Antonio Di Biagio, Maurizio Sanguinetti, Luca Masucci, Chiara Gabbi, Serafina Valente, Susanna Guerrini, Ilaria Meloni, Maria Antonietta Mencarelli, Caterina Lo Rizzo, Elena Bargagli, Marco Mandalà, Alessia Giorli, Lorenzo Salerni, Giuseppe Fiorentino, Patrizia Zucchi, Pierpaolo Parravicini, Elisabetta Menatti, Stefano Baratti, Tullio Trotta, Ferdinando Giannattasio, Gabriella Coiro, Fabio Lena, Domenico A Coviello, Cristina Mussini, Elisa Benetti, Rossella Tita, Ottavia Spiga, Andrea Ciolfi, Giovanni Birolo, Alessandro Bruselles, Gabriella Doddato, Annarita Giliberti, Caterina Marconi, Francesco Musacchia, Tommaso Pippucci, Annalaura Torella, Alfonso Trezza, Floriana Valentino, Margherita Baldassarri, Alfredo Brusco, Rosanna Asselta, Mirella Bruttini, Simone Furini, Marco Seri, Vincenzo Nigro, Giuseppe Matullo, Marco Tartaglia, Francesca Mari, GEN-COVID Multicenter Study, Alessandra Renieri, Anna Maria Pinto, Elisa Frullanti, Chiara Fallerini, Sergio Daga, Susanna Croci, Sara Amitrano, Francesca Fava, Francesca Montagnani, Laura Di Sarno, Andrea Tommasi, Maria Palmieri, Arianna Emiliozzi, Massimiliano Fabbiani, Barbara Rossetti, Giacomo Zanelli, Laura Bergantini, Miriana D'Alessandro, Paolo Cameli, David Bennet, Federico Anedda, Simona Marcantonio, Sabino Scolletta, Federico Franchi, Maria Antonietta Mazzei, Edoardo Conticini, Luca Cantarini, Bruno Frediani, Danilo Tacconi, Marco Feri, Raffaele Scala, Genni Spargi, Marta Corridi, Cesira Nencioni, Gian Piero Caldarelli, Maurizio Spagnesi, Paolo Piacentini, Maria Bandini, Elena Desanctis, Anna Canaccini, Chiara Spertilli, Alice Donati, Luca Guidelli, Leonardo Croci, Agnese Verzuri, Valentina Anemoli, Agostino Ognibene, Massimo Vaghi, Antonella D'Arminio Monforte, Esther Merlini, Mario U Mondelli, Stefania Mantovani, Serena Ludovisi, Massimo Girardis, Sophie Venturelli, Marco Sita, Andrea Cossarizza, Andrea Antinori, Alessandra Vergori, Stefano Rusconi, Matteo Siano, Arianna Gabrieli, Agostino Riva, Daniela Francisci, Elisabetta Schiaroli, Pier Giorgio Scotton, Francesca Andretta, Sandro Panese, Renzo Scaggiante, Saverio Giuseppe Parisi, Francesco Castelli, Maria Eugenia Quiros-Roldan, Paola Magro, Cristina Minardi, Deborah Castelli, Itala Polesini, Matteo Della Monica, Carmelo Piscopo, Mario Capasso, Roberta Russo, Immacolata Andolfo, Achille Iolascon, Massimo Carella, Marco Castori, Giuseppe Merla, Filippo Aucella, Pamela Raggi, Carmen Marciano, Rita Perna, Matteo Bassetti, Antonio Di Biagio, Maurizio Sanguinetti, Luca Masucci, Chiara Gabbi, Serafina Valente, Susanna Guerrini, Ilaria Meloni, Maria Antonietta Mencarelli, Caterina Lo Rizzo, Elena Bargagli, Marco Mandalà, Alessia Giorli, Lorenzo Salerni, Giuseppe Fiorentino, Patrizia Zucchi, Pierpaolo Parravicini, Elisabetta Menatti, Stefano Baratti, Tullio Trotta, Ferdinando Giannattasio, Gabriella Coiro, Fabio Lena, Domenico A Coviello, Cristina Mussini

Abstract

In December 2019, an initial cluster of interstitial bilateral pneumonia emerged in Wuhan, China. A human-to-human transmission was assumed and a previously unrecognized entity, termed coronavirus disease-19 (COVID-19) due to a novel coronavirus (SARS-CoV-2) was described. The infection has rapidly spread out all over the world and Italy has been the first European country experiencing the endemic wave with unexpected clinical severity in comparison with Asian countries. It has been shown that SARS-CoV-2 utilizes angiotensin converting enzyme 2 (ACE2) as host receptor and host proteases for cell surface binding and internalization. Thus, a predisposing genetic background can give reason for interindividual disease susceptibility and/or severity. Taking advantage of the Network of Italian Genomes (NIG), here we mined whole-exome sequencing data of 6930 Italian control individuals from five different centers looking for ACE2 variants. A number of variants with a potential impact on protein stability were identified. Among these, three more common missense changes, p.(Asn720Asp), p.(Lys26Arg), and p.(Gly211Arg) were predicted to interfere with protein structure and stabilization. Rare variants likely interfering with the internalization process, namely p.(Leu351Val) and p.(Pro389His), predicted to interfere with SARS-CoV-2 spike protein binding, were also observed. Comparison of ACE2 WES data between a cohort of 131 patients and 258 controls allowed identifying a statistically significant (P value < 0.029) higher allelic variability in controls compared with patients. These findings suggest that a predisposing genetic background may contribute to the observed interindividual clinical variability associated with COVID-19, allowing an evidence-based risk assessment leading to personalized preventive measures and therapeutic options.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Figures

Fig. 1. ACE2 crystal structure with PDB…
Fig. 1. ACE2 crystal structure with PDB ID 1R42.
Surface and cartoon representations of protein in gray. In blue stick are represented each single mutated positions, cartoon region in yellow represent segment between amino acid 30–41, cartoon in green represent segment between amino acid 353–357 and cartoon in red represent segment between amino acid 82–84 that are protein regions responsible of interaction with 2019-nCOv spike glycoprotein.
Fig. 2. ACE2 wild-type and variants superimposed…
Fig. 2. ACE2 wild-type and variants superimposed structures after 100 ns MD simulation.
Cartoon representation of ACE2 wild type (orange) and variants (green) in blue sticks the wild-type residues while in red the corresponding variants. In cyan and pink sticks residues interacting with each specific position.
Fig. 3. Structure superimposition snapshot between wild-type…
Fig. 3. Structure superimposition snapshot between wild-type protein and variant proteins.
a Root mean square deviation (RMSD) trends for the backbone of ACE2 WT (black line) and some selected variants (colored lines, see legend) during 100 ns of simulation. The molecular dynamics simulation shows a good stability for all systems with exception of G211R mutants. RMSD is a parameter used to define the stability of an element. Wild type shows a steady course in the RMSD value, stabilizing at an average of 0.2 nm, while, the G211R variant shows a gradual increase in RMSD value, stabilizing at an average of 0.6 nm. b SASA graphical representation of ACE2 WT (black line) and ACE2 variants (colored lines, see legend).
Fig. 4. Differences in ACE2 variants in…
Fig. 4. Differences in ACE2 variants in COVID-19 patients compared with controls.
The figure shows the variants located in the ACE2 protein domains. The variants present in controls are shown in black while the variants in cases are shown in red. The number of patients carrying the variant is shown in brackets.

References

    1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382:727–33. doi: 10.1056/NEJMoa2001017.
    1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5.
    1. Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet. 2020;395:470–3. doi: 10.1016/S0140-6736(20)30185-9.
    1. Chan JFW, Yuan S, Kok KH, To KKW, Chu H, Yang J, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020;395:514–23. doi: 10.1016/S0140-6736(20)30154-9.
    1. Lai C-C, Liu YH, Wang C-Y, Wang Y-H, Hsueh S-C, Yen M-Y, et al. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): facts and myths. J Microbiol Immunol Infect. 2020;53:404–12. doi: 10.1016/j.jmii.2020.02.012.
    1. Zhou Y, Hou Y, Shen J, Huang Y, Martin W, Cheng F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov. 2020;6:14. doi: 10.1038/s41421-020-0153-3.
    1. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet. Respir Med. 2020;8:420–2. doi: 10.1016/S2213-2600(20)30076-X.
    1. Liu Y, Yan L-M, Wan L, Xiang T-X, Le A, Liu J-M, et al. Viral dynamics in mild and severe cases of COVID-19. Lancet Infect Dis. 2020;20:656–7. doi: 10.1016/S1473-3099(20)30232-2.
    1. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–3. doi: 10.1038/s41586-020-2012-7.
    1. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367:1260–3. doi: 10.1126/science.abb2507.
    1. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of the SARS-CoV-2 by full-length human ACE2. Science. 2020;367:1444–8. doi: 10.1126/science.abb2762.
    1. Li W, Kuhn JH, Moore MJ, Wong SK, Huang IC, Farzan M, et al. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J. 2005;24:1634–43. doi: 10.1038/sj.emboj.7600640.
    1. Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S, Gallagher T. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J Virol. 2011;85:873–82. doi: 10.1128/JVI.02062-10.
    1. Heurich A, Hofmann-Winkler H, Gierer S, Liepold T, Jahn O, Pohlmann S. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J Virol. 2014;88:1293–307. doi: 10.1128/JVI.02202-13.
    1. Tukiainen T, Villani AC, Yen A, Rivas MA, Marshall JL, Satija R, et al. Landscape of X chromosome inactivation across human tissues. Nature. 2017;550:244–8. doi: 10.1038/nature24265.
    1. Benetti E, Giliberti A, Emiliozzi A, Valentino F, Bergantini L, Fallerini C, et al. Clinical and molecular characterization of COVID-19 hospitalized patients. 2020. .
    1. Magini P, Smits DJ, Vandervore L, Schot R, Columbaro M, Kasteleijn E, et al. Loss of SMPD4 causes a developmental disorder characterized by microcephaly and congenital arthrogryposis. Am J Hum Genet. 2019;105:689–705. doi: 10.1016/j.ajhg.2019.08.006.
    1. Del Dotto V, Ullah F, Di Meo I, Magini P, Gusic M, Maresca A, et al. SSBP1 mutations cause mtDNA depletion underlying a complex optic atrophy disorder. J Clin Invest. 2020;130:108–25. doi: 10.1172/JCI128514.
    1. Flex E, Martinelli S, Van Dijck A, Ciolfi A, Cecchetti S, Coluzzi E, et al. Aberrant function of the C-terminal tail of HIST1H1E accelerates cellular senescence and causes premature aging. Am J Hum Genet. 2019;105:493–508. doi: 10.1016/j.ajhg.2019.07.007.
    1. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303. doi: 10.1101/gr.107524.110.
    1. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164. doi: 10.1093/nar/gkq603.
    1. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, et al. The Ensembl variant effect predictor. Genome Biol. 2016;17:122. doi: 10.1186/s13059-016-0974-4.
    1. Rehm HL, Bale SJ, Bayrak-Toydemir P, Berg JS, Brown KK, Deignan JL, et al. ACMG clinical laboratory standards for next-generation sequencing. Genet Med. 2013;15:733–47. doi: 10.1038/gim.2013.92.
    1. Towler P, Staker B, Prasad SG, Menon S, Tang J, Parsons T, et al. ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. J Biol Chem. 2004;279:17996–8007. doi: 10.1074/jbc.M311191200.
    1. Pires D, Ascher DB, Blundell TL. DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Res. 2014;42(Web Server issue):W314–W319. doi: 10.1093/nar/gku411.
    1. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, et al. Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;15:19–25. doi: 10.1016/j.softx.2015.06.001.
    1. Turner PJ XM Grace, Version 5.1.19. Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology, Beaverton, OR; 2005.
    1. Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys. 2007;126:014101. doi: 10.1063/1.2408420.
    1. Berendsen HJC, Postma JPM, Van Gunsteren WF, Dinola A, Haak JR. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984;81:3684. doi: 10.1063/1.448118.
    1. Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov. bioRxiv. 2020. 10.1101/2020.01.26.919985
    1. Cereda D, Tirani M, Rovida F, Demicheli V, Ajelli M, Poletti P, et al. The early phase of the COVID-19 outbreak in Lombardy, Italy. 2020.
    1. Modi C, Boehm V, Ferraro S, Stein G, Seljak U How deadly is COVID-19? A rigorous analysis of excess mortality and age-dependent fatality rates in Italy. 2020. 10.1101/2020.04.15.20067074v3
    1. Cao Y, Li L, Feng Z, Wan S, Huang P, Sun X, et al. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov. 2020;6:11. doi: 10.1038/s41421-020-0147-1.
    1. Carrel L, Willard HF. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature. 2005;434:400–4. doi: 10.1038/nature03479.

Source: PubMed

3
Subscribe