Cardiac Dysfunction and Arrhythmias 3 Months After Hospitalization for COVID-19

Charlotte B Ingul, Jostein Grimsmo, Albulena Mecinaj, Divna Trebinjac, Magnus Berger Nossen, Simon Andrup, Bjørnar Grenne, Håvard Dalen, Gunnar Einvik, Knut Stavem, Turid Follestad, Tony Josefsen, Torbjørn Omland, Torstein Jensen, Charlotte B Ingul, Jostein Grimsmo, Albulena Mecinaj, Divna Trebinjac, Magnus Berger Nossen, Simon Andrup, Bjørnar Grenne, Håvard Dalen, Gunnar Einvik, Knut Stavem, Turid Follestad, Tony Josefsen, Torbjørn Omland, Torstein Jensen

Abstract

Background The extent of cardiac dysfunction post-COVID-19 varies, and there is a lack of data on arrhythmic burden. Methods and Results This was a combined multicenter prospective cohort study and cross-sectional case-control study. Cardiac function assessed by echocardiography in patients with COVID-19 3 to 4 months after hospital discharge was compared with matched controls. The 24-hour ECGs were recorded in patients with COVID-19. A total of 204 patients with COVID-19 consented to participate (mean age, 58.5 years; 44% women), and 204 controls were included (mean age, 58.4 years; 44% women). Patients with COVID-19 had worse right ventricle free wall longitudinal strain (adjusted estimated mean difference, 1.5 percentage points; 95% CI, -2.6 to -0.5; P=0.005) and lower tricuspid annular plane systolic excursion (-0.10 cm; 95% CI, -0.14 to -0.05; P<0.001) and cardiac index (-0.26 L/min per m2; 95% CI, -0.40 to -0.12; P<0.001), but slightly better left ventricle global strain (-0.8 percentage points; 95% CI, 0.2-1.3; P=0.008) compared with controls. Reduced diastolic function was twice as common compared with controls (60 [30%] versus 29 [15%], respectively; odds ratio, 2.4; P=0.001). Having dyspnea or fatigue were not associated with cardiac function. Right ventricle free wall longitudinal strain was worse after intensive care treatment. Arrhythmias were found in 27% of the patients, mainly premature ventricular contractions and nonsustained ventricular tachycardia (18% and 5%, respectively). Conclusions At 3 months after hospital discharge with COVID-19, right ventricular function was mildly impaired, and diastolic dysfunction was twice as common compared with controls. There was little evidence for an association between cardiac function and intensive care treatment, dyspnea, or fatigue. Ventricular arrhythmias were common, but the clinical importance is unknown. Registration URL: https://ichgcp.net/clinical-trials-registry/NCT04535154" title="See in ClinicalTrials.gov">NCT04535154.

Keywords: COVID‐19; arrhythmias; cardiac function; dyspnea; intensive care.

References

    1. Geng YJ, Wei ZY, Qian HY, Huang J, Lodato R, Castriotta RJ. Pathophysiological characteristics and therapeutic approaches for pulmonary injury and cardiovascular complications of coronavirus disease 2019. Cardiovasc Pathol. 2020;47:107228. 10.1016/j.carpath.2020.107228
    1. Stavem K, Ghanima W, Olsen MK, Gilboe HM, Einvik G. Prevalence and determinants of fatigue after COVID‐19 in non‐hospitalized subjects: a population‐based study. Int J Environ Res Public Health. 2021;18:2030. 10.3390/ijerph18042030
    1. Lerum TV, Aalokken TM, Bronstad E, Aarli B, Ikdahl E, Lund KMA, Durheim MT, Rodriguez JR, Meltzer C, Tonby K, et al. Dyspnoea, lung function and CT findings three months after hospital admission for COVID‐19. Eur Respir J. 2020;57:2003448.
    1. Shi S, Qin MU, Shen BO, Cai Y, Liu T, Yang F, Gong W, Liu XU, Liang J, Zhao Q, et al. Association of cardiac injury with mortality in hospitalized patients with COVID‐19 in Wuhan, China. JAMA Cardiol. 2020;5:802–810. doi: 10.1001/jamacardio.2020.0950
    1. Li Y, Li HE, Zhu S, Xie Y, Wang B, He L, Zhang D, Zhang Y, Yuan H, Wu C, et al. Prognostic value of right ventricular longitudinal strain in patients with COVID‐19. JACC Cardiovasc Imaging. 2020;13:2287–2299. doi: 10.1016/j.jcmg.2020.04.014
    1. Lassen MCH, Skaarup KG, Lind JN, Alhakak AS, Sengeløv M, Nielsen AB, Espersen C, Ravnkilde K, Hauser R, Schöps LB, et al. Echocardiographic abnormalities and predictors of mortality in hospitalized COVID‐19 patients: the ECHOVID‐19 study. ESC Heart Fail. 2020;22(7):4189–4197. doi: 10.1002/ehf2.13044
    1. Sonnweber T, Sahanic S, Pizzini A, Luger A, Schwabl C, Sonnweber B, Kurz K, Koppelstätter S, Haschka D, Petzer V, et al. Cardiopulmonary recovery after COVID‐19 ‐ an observational prospective multi‐center trial. Eur Respir J. 2021;57:2003481.
    1. Sechi LA, Colussi G, Bulfone L, Brosolo G, Da Porto A, Peghin M, Patruno V, Tascini C, Catena C. Short‐term cardiac outcome in survivors of COVID‐19: a systematic study after hospital discharge. Clin Res Cardiol. 2021;110:1063–1072. doi: 10.1007/s00392-020-01800-z
    1. Kotecha T, Knight DS, Razvi Y, Kumar K, Vimalesvaran K, Thornton G, Patel R, Chacko L, Brown JT, Coyle C, et al. Patterns of myocardial injury in recovered troponin‐positive COVID‐19 patients assessed by cardiovascular magnetic resonance. Eur Heart J. 2021;14(42):1866–1878. doi: 10.1093/eurheartj/ehab075
    1. Puntmann VO, Carerj ML, Wieters I, Fahim M, Arendt C, Hoffmann J, Shchendrygina A, Escher F, Vasa‐Nicotera M, Zeiher AM, et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID‐19). JAMA Cardiol. 2020;5:1265–1273. doi: 10.1001/jamacardio.2020.3557
    1. Lindner D, Fitzek A, Bräuninger H, Aleshcheva G, Edler C, Meissner K, Scherschel K, Kirchhof P, Escher F, Schultheiss H‐P, et al. Association of cardiac infection with SARS‐CoV‐2 in confirmed COVID‐19 autopsy cases. JAMA Cardiol. 2020;5:1281–1285. doi: 10.1001/jamacardio.2020.3551
    1. Kochi AN, Tagliari AP, Forleo GB, Fassini GM, Tondo C. Cardiac and arrhythmic complications in patients with COVID‐19. J Cardiovasc Electrophysiol. 2020;31:1003–1008. doi: 10.1111/jce.14479
    1. Zareini B, Rajan D, El‐Sheikh M, Jensen MH, Højbjerg Lassen MC, Skaarup K, Hansen ML, Biering‐Sørensen T, Jabbari R, Kirk O, et al. Cardiac arrhythmias in patients hospitalized with COVID‐19: the ACOVID study. Heart Rhythm. 2021;2(3):304–308. doi: 10.1016/j.hroo.2021.03.008
    1. World Health Organization . WHO R&D Blueprint novel Coronavirus COVID‐19 Therapeutic Trial Synopsis. 2020.
    1. Letnes JM, Eriksen‐Volnes T, Nes B, Wisloff U, Salvesen O, Dalen H. Variability of echocardiographic measures of left ventricular diastolic function. The HUNT study. Echocardiography. 2021;38:901–908. doi: 10.1111/echo.15073
    1. Lang RM, Badano LP, Mor‐Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16:233–270. doi: 10.1093/ehjci/jev014
    1. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF, Dokainish H, Edvardsen T, Flachskampf FA, Gillebert TC, Klein AL, Lancellotti P, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2016;17:1321–1360. doi: 10.1093/ehjci/jew082
    1. Voigt J‐U, Pedrizzetti G, Lysyansky P, Marwick TH, Houle H, Baumann R, Pedri S, Ito Y, Abe Y, Metz S, et al. Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. J Am Soc Echocardiogr. 2015;28:183–193. doi: 10.1016/j.echo.2014.11.003
    1. Williams N. The MRC breathlessness scale. Occup Med. 2017;67:496–497. doi: 10.1093/occmed/kqx086
    1. Chalder T, Berelowitz G, Pawlikowska T, Watts L, Wessely S, Wright D, Wallace EP. Development of a fatigue scale. J Psychosom Res. 1993;37:147–153. doi: 10.1016/0022-3999(93)90081-P
    1. Loge JH, Ekeberg O, Kaasa S. Fatigue in the general Norwegian population: normative data and associations. J Psychosom Res. 1998;45:53–65. doi: 10.1016/S0022-3999(97)00291-2
    1. Available at: . Accessed January 7, 2022.
    1. Available at: . Accessed January 7, 2022.
    1. Dalen H, Thorstensen A, Vatten LJ, Aase SA, Stoylen A. Reference values and distribution of conventional echocardiographic Doppler measures and longitudinal tissue Doppler velocities in a population free from cardiovascular disease. Circ Cardiovasc Imaging. 2010;3:614–622. doi: 10.1161/CIRCIMAGING.109.926022
    1. Stoylen A, Molmen HE, Dalen H. Relation between Mitral Annular Plane Systolic Excursion and Global longitudinal strain in normal subjects: the HUNT study. Echocardiography. 2018;35:603–610. doi: 10.1111/echo.13825
    1. Tsugu T, Postolache A, Dulgheru R, Sugimoto T, Tridetti J, Nguyen Trung M‐L, Piette C, Moonen M, Manganaro R, Ilardi F, et al. Echocardiographic reference ranges for normal left ventricular layer‐specific strain: results from the EACVI NORRE study. Eur Heart J‐Cardiovasc Imaging. 2020;21:896–905. doi: 10.1093/ehjci/jeaa050
    1. Muraru D, Onciul S, Peluso D, Soriani N, Cucchini U, Aruta P, Romeo G, Cavalli G, Iliceto S, Badano LP. Sex‐ and method‐specific reference values for right ventricular strain by 2‐dimensional speckle‐tracking echocardiography. Circ Cardiovasc Imaging. 2016;9:e003866. doi: 10.1161/CIRCIMAGING.115.003866
    1. Mahmoud‐Elsayed HM, Moody WE, Bradlow WM, Khan‐Kheil AM, Senior J, Hudsmith LE, Steeds RP. Echocardiographic findings in patients with COVID‐19 pneumonia. Can J Cardiol. 2020;36:1203–1207. doi: 10.1016/j.cjca.2020.05.030
    1. Blyth KG, Groenning BA, Mark PB, Martin TN, Foster JE, Steedman T, Morton JJ, Dargie HJ, Peacock AJ. NT‐proBNP can be used to detect right ventricular systolic dysfunction in pulmonary hypertension. Eur Respir J. 2007;29:737–744. doi: 10.1183/09031936.00095606
    1. Szekely Y, Lichter Y, Taieb P, Banai A, Hochstadt A, Merdler I, Gal Oz A, Rothschild E, Baruch G, Peri Y, et al. Spectrum of cardiac manifestations in COVID‐19: a systematic echocardiographic study. Circulation. 2020;142:342–353. doi: 10.1161/CIRCULATIONAHA.120.047971
    1. Convertino VA. Cardiovascular consequences of bed rest: effect on maximal oxygen uptake. Med Sci Sports Exerc. 1997;29:191–196. doi: 10.1097/00005768-199702000-00005
    1. Skjorten I, Ankerstjerne OAW, Trebinjac D, Brønstad E, Rasch‐Halvorsen Ø, Einvik G, Vigeland Lerum TV, Stavem K, Edvardsen A, Ingul CB. Cardiopulmonary exercise capacity and limitations 3 months after COVID‐19 hospitalisation. Eur Respir J. 2021;58:2100996.
    1. Freaney PM, Shah SJ, Khan SS. COVID‐19 and heart failure with preserved ejection fraction. JAMA. 2020;324:1499–1500. doi: 10.1001/jama.2020.17445
    1. Caravita S, Baratto C, Di Marco F, Calabrese A, Balestrieri G, Russo F, Faini A, Soranna D, Perego GB, Badano LP, et al. Haemodynamic characteristics of COVID‐19 patients with acute respiratory distress syndrome requiring mechanical ventilation. An invasive assessment using right heart catheterization. Eur J Heart Fail. 2020;22:2228–2237.
    1. Coromilas EJ, Kochav S, Goldenthal I, Biviano A, Garan H, Goldbarg S, Kim JH, Yeo I, Tracy C, Ayanian S, et al. Worldwide survey of COVID‐19‐associated arrhythmias. Circ Arrhythm Electrophysiol. 2021;14:e009458.
    1. Pranata R, Huang I, Raharjo SB. Incidence and impact of cardiac arrhythmias in coronavirus disease 2019 (COVID‐19): a systematic review and meta‐analysis. Indian Pacing Electrophysiol J. 2020;20:193–198. doi: 10.1016/j.ipej.2020.08.001
    1. Abdalla IS, Prineas RJ, Neaton JD, Jacobs DR Jr, Crow RS. Relation between ventricular premature complexes and sudden cardiac death in apparently healthy men. Am J Cardiol. 1987;60:1036–1042. doi: 10.1016/0002-9149(87)90348-1
    1. Kennedy HL, Whitlock JA, Sprague MK, Kennedy LJ, Buckingham TA, Goldberg RJ. Long‐term follow‐up of asymptomatic healthy subjects with frequent and complex ventricular ectopy. N Engl J Med. 1985;312:193–197. doi: 10.1056/NEJM198501243120401
    1. Sheldon SH, Gard JJ, Asirvatham SJ. Premature ventricular contractions and non‐sustained ventricular tachycardia: association with sudden cardiac death, risk stratification, and management strategies. Indian Pacing Electrophysiol J. 2010;10:357–371.
    1. Skranes JB, Einvik G, Namtvedt SK, Randby A, Hrubos‐Strøm H, Brynildsen J, Hagve TA, Somers VK, Røsjø H, Omland T. Biomarkers of cardiovascular injury and stress are associated with increased frequency of ventricular ectopy: a population‐based study. BMC Cardiovasc Disord. 2016;16:233. doi: 10.1186/s12872-016-0407-z
    1. Hingorani P, Karnad DR, Rohekar P, Kerkar V, Lokhandwala YY, Kothari S. Arrhythmias seen in baseline 24‐hour Holter ECG recordings in healthy normal volunteers during phase 1 clinical trials. J Clin Pharmacol. 2016;56:885–893. doi: 10.1002/jcph.679
    1. Buckley BJR, Harrison SL, Fazio‐Eynullayeva E, Underhill P, Lane DA, Lip GYH. Prevalence and clinical outcomes of myocarditis and pericarditis in 718,365 COVID‐19 patients. Eur J Clin Invest. 2021;51:e13679. doi: 10.1111/eci.13679
    1. Nelesen R, Dar Y, Thomas K, Dimsdale JE. The relationship between fatigue and cardiac functioning. Arch Intern Med. 2008;168:943–949. doi: 10.1001/archinte.168.9.943
    1. Karlsen S, Dahlslett T, Grenne B, Sjøli B, Smiseth O, Edvardsen T, Brunvand H. Global longitudinal strain is a more reproducible measure of left ventricular function than ejection fraction regardless of echocardiographic training. Cardiovasc Ultrasound. 2019;17:18. doi: 10.1186/s12947-019-0168-9

Source: PubMed

3
Subscribe