Liraglutide in people treated for type 2 diabetes with multiple daily insulin injections: randomised clinical trial (MDI Liraglutide trial)

Marcus Lind, Irl B Hirsch, Jaakko Tuomilehto, Sofia Dahlqvist, Bo Ahrén, Ole Torffvit, Stig Attvall, Magnus Ekelund, Karin Filipsson, Bengt-Olov Tengmark, Stefan Sjöberg, Nils-Gunnar Pehrsson, Marcus Lind, Irl B Hirsch, Jaakko Tuomilehto, Sofia Dahlqvist, Bo Ahrén, Ole Torffvit, Stig Attvall, Magnus Ekelund, Karin Filipsson, Bengt-Olov Tengmark, Stefan Sjöberg, Nils-Gunnar Pehrsson

Abstract

Study question: What are the effects of liraglutide, an incretin based treatment, on glycaemic control in people with type 2 diabetes treated with multiple daily insulin injections?

Methods: The study was a randomised, double blind, placebo controlled trial with a parallel group design carried out at 13 hospital based outpatient clinics and one primary care unit in Sweden. Patients were considered eligible for inclusion if they had type 2 diabetes and inadequate glycaemic control (HbA1c concentrations ≥ 58 mmol/mol (7.5%) and ≤ 102 mmol/mol (11.5%)), a body mass index of 27.5-45 kg/m(2), and required multiple daily insulin injections. Overall, 124 participants were randomised 1:1 to subcutaneous liraglutide or placebo by minimisation allocation. The main outcome measure was change in HbA1c level from baseline to week 24.

Study answer and limitations: Liraglutide was associated with a significant reduction of 16.9 mmol/mol (1.5%) in HbA1c versus 4.6 mmol/mol (0.4%) for placebo, difference -12.3 mmol/mol (95% confidence interval -15.8 to -8.8 mmol/mol; -1.13%, -1.45 to -0.81 mmol/mol). Body weight was significantly reduced in participants in the liraglutide compared with placebo group (3.8 v 0.0 kg, difference -3.8, -4.9 to -2.8 kg), and total daily insulin doses were significantly reduced, by 18.1 units and 2.3 units (difference -15.8, -23.1 to -8.5 units). Reductions in mean and standard deviation of glucose levels estimated by masked continuous glucose monitoring were significantly greater in the liraglutide group than placebo group (-1.9 and -0.5 mmol/L). Neither group experienced severe hypoglycaemic events nor were there any significant differences in symptomatic or asymptomatic non-severe hypoglycaemia (<4.0 or <3.0 mmol/L). The mean number of non-severe symptomatic hypoglycaemic events (<4.0 mmol/L) during follow-up was 1.29 in the liraglutide group and 1.24 in the placebo group (P=0.96). One of the study's limitations was its relatively short duration. Sustained effects of liraglutide have, however, been found over lengthier periods in connection with other treatment regimens. Cardiovascular safety and potential adverse events during longer exposure to liraglutide need to be evaluated. Nausea was experienced by 21 (32.8%) participants in the liraglutide group and 5 (7.8%) in the placebo group and 3 (5%) and 4 (7%) participants in these groups, respectively, had any serious adverse event.

What this study adds: Adding liraglutide to multiple daily insulin injections in people with type 2 diabetes improves glycaemic control without an increased risk of hypoglycaemia, reduces body weight, and enables patients to lower their insulin doses.

Funding, competing interests, data sharing: This study was an investigator initiated trial, supported in part by Novo Nordisk and InfuCare. Potential competing interests have been reported and are available on the bmj.com.

Study registration: EudraCT 2012-001941-42.

Conflict of interest statement

Competing interests: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author) and declare: ML and SD had support from Novo Nordisk for the submitted work; outside of the submitted work, authors have relations to the following companies that may take interest in the submitted work. ML has received research grants from AstraZeneca, Dexcom, and Novo Nordisk, been a consultant or received honorariums from Medtronic, Eli Lilly, Pfizer, Abbot Scandinavia, Bayer, Novo Nordisk, and Rubin Medical, and has participated in advisory boards for Novo Nordisk. IBH has received research grants from Sanofi-US, Novo Nordisk, and Halozyme, and has been a consultant for Abbott Diabetes Care, Valeritas, Roche Diagnostics, and Becton Dickinson. JT has received research support from Bayer, Boehringer Ingelheim, Merck Sharp & Dohme, Novartis, Sanofi Aventis, and Servier, and has acted as a consultant, advisory board member, or speaker for Impeto Medical, Novartis, Novo Nordisk, Sanofi -Aventis, Eli Lilly, Merck Serono, Merck Sharp & Dohme, Bayer, and Boehringer Ingelheim. BA has consulted for Novartis, GlaxoSmithKline, Merck, Sanofi, Novo Nordisk, Boehringer Ingelheim, and Takeda, and has received lecture fees from Novartis, Merck, Novo Nordisk, Sanofi, AstraZeneca, and GlaxoSmithKline. OT has been a consultant to Eli Lilly and Novo Nordisk. ME has been a consultant or received honorariums from Novartis, Merck Sharp & Dohme, GlaxoSmithKline, Sanofi, Eli Lilly, and Rubin Medical, and has participated in advisory boards for Sanofi. KF has consulted for Novo Nordisk. BOT has participated in advisory boards for Novo Nordisk and Boehringer Ingelheim and has received lecture fees from Novo Nordisk, Eli Lilly, Sanofi, Boehringer Ingelheim, AstraZeneca, and Bristol-Myers Squibb. SS has occasionally been a consultant and received honorariums from Eli Lilly, Sanofi-Aventis, Novo Nordisk, Abbot Scandinavia, AstraZeneca, and Merck, Sharp & Dohme and has participated in advisory boards for Sanofi-Aventis, AstraZeneca, and Eli Lilly. SD, SA, and N-GP has no such conflicts of interest to declare. Authors’ spouses, partners, or children have no financial relationships that may be relevant to the submitted work; and no authors have non-financial interests that may be relevant to the submitted work.

© Lind et al 2015.

Figures

https://www.ncbi.nlm.nih.gov/pmc/articles/instance/4784812/bin/linm027803.f1_default.jpg
Fig 1 Flow of participants through trial
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/4784812/bin/linm027803.f2_default.jpg
Fig 2 Change in HbA1c concentration, weight, and daily insulin dose by treatment group over time (mean and 95% confidence interval). IFCC= International Federation of Clinical Chemistry; LOCF=last observation carried forward
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/4784812/bin/linm027803.f3_default.jpg
Fig 3 Incidence of nausea (%) by treatment group over time (safety population)

References

    1. UK Prospective Diabetes Study Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;352:837-53.
    1. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 2008;359:1577-89.
    1. Lind M, Olsson M, Rosengren A, Svensson AM, Bounias I, Gudbjörnsdottir S. The relationship between glycaemic control and heart failure in 83,021 patients with type 2 diabetes. Diabetologia 2012;55:2946-53.
    1. American Diabetes Association. Standards of medical care in diabetes—2014. Diabetes Care 2014;37(Suppl 1):S14-80.
    1. Nationella riktlinjer för diabetesvård (National guidelines for diabetes care). National Board of Health and Welfare Sweden, 2015 .
    1. Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycaemia in type 2 diabetes: a patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2012;55:1577-96.
    1. Lind M, Pivodic A, Cea-Soriano L, Nerman O, Pehrsson NG, Garcia-Rodriguez LA. Changes in HbA1c and frequency of measuring HbA1c and adjusting glucose-lowering medications in the 10 years following diagnosis of type 2 diabetes: a population-based study in the UK. Diabetologia 2014;57:1586-94.
    1. Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2015;38:140-9.
    1. Pi-Sunyer FX. The impact of weight gain on motivation, compliance, and metabolic control in patients with type 2 diabetes mellitus. Postgrad Med 2009;121:94-107.
    1. Lind M, Jendle J, Torffvit O, Lager I. Glucagon-like peptide 1 (GLP-1) analogue combined with insulin reduces HbA1c and weight with low risk of hypoglycemia and high treatment satisfaction. Prim Care Diabetes 2012;6:41-6.
    1. Lind M, Hirsch IB, Tuomilehto J, Dahlqvist S, Torffvit O, Pehrsson NG. Design and methods of a randomised double-blind trial of adding liraglutide to control HbA1c in patients with type 2 diabetes with impaired glycaemic control treated with multiple daily insulin injections (MDI-Liraglutide trial). Prim Care Diabetes 2015;9:15-22.
    1. Hirsch IB. Clinical review: realistic expectations and practical use of continuous glucose monitoring for the endocrinologist. J Clin Endocrinol Metab 2009;94:2232-8.
    1. Workgroup on Hypoglycemia, American Diabetes Association. Defining and reporting hypoglycemia in diabetes: a report from the American Diabetes Association Workgroup on Hypoglycemia. Diabetes Care 2005;28:1245-9.
    1. Lind M. Incretin therapy and its effect on body weight in patients with diabetes. Prim Care Diabetes 2012;6:187-91.
    1. Ahrén B. Insulin plus incretin: a glucose-lowering strategy for type 2-diabetes. World J Diabetes 2014;5:40-51.
    1. Fonseca V, Schweizer A, Albrecht D, Baron MA, Chang I, Dejager S. Addition of vildagliptin to insulin improves glycaemic control in type 2 diabetes. Diabetologia 2007;50:1148-55.
    1. Kothny W, Foley J, Kozlovski P, Shao Q, Gallwitz B, Lukashevich V. Improved glycaemic control with vildagliptin added to insulin, with or without metformin, in patients with type 2 diabetes mellitus. Diabetes Obes Metab 2013;15:252-7.
    1. Vilsbøll T, Rosenstock J, Yki-Järvinen H, et al. Efficacy and safety of sitagliptin when added to insulin therapy in patients with type 2 diabetes. Diabetes Obes Metab 2010;12:167-77.
    1. Yki-Järvinen H, Rosenstock J, Durán-Garcia S, et al. Effects of adding linagliptin to basal insulin regimen for inadequately controlled type 2 diabetes: a ≥52-week randomized, double-blind study. Diabetes Care 2013;36:3875-81.
    1. Buse JB, Bergenstal RM, Glass LC, et al. Use of twice-daily exenatide in basal insulin-treated patients with type 2 diabetes: a randomized, controlled trial. Ann Intern Med 2011;154:103-12.
    1. Riddle MC, Aronson R, Home P, et al. Adding once-daily lixisenatide for type 2 diabetes inadequately controlled by established basal insulin: a 24-week, randomized, placebo controlled comparison (GetGoal-L). Diabetes Care 2013;36:2489-96.
    1. Riddle MC, Forst T, Aronson R, et al. Adding once-daily lixisenatide for type 2 diabetes inadequately controlled with newly initiated and continuously titrated basal insulin glargine: a 24-week, randomized, placebo-controlled study (GetGoal-Duo 1). Diabetes Care 2013;36:2497-503.
    1. Mathieu C, Rodbard HW, Cariou B, et al; BEGIN: VICTOZA ADD-ON (NN1250-3948) study group. A comparison of adding liraglutide versus a single daily dose of insulin aspart to insulin degludec in subjects with type 2 diabetes (BEGIN: VICTOZA ADD-ON). Diabetes Obes Metab 2014;16:636-44.
    1. Rosenstock J, Fonseca VA, Gross JL, et al; Harmony 6 Study Group. Advancing basal insulin replacement in type 2 diabetes inadequately controlled with insulin glargine plus oral agents: a comparison of adding albiglutide, a weekly GLP-1 receptor agonist, versus thrice-daily prandial insulin lispro. Diabetes Care 2014;37:2317-25.
    1. Pratley RE, Nauck M, Bailey T, et al for 1860-LIRA-DPP-4 Study Group. Liraglutide versus sitagliptin for patients with type 2 diabetes who did not have adequate glycaemic control with metformin: a 26-week, randomised, parallel-group, open-label trial. Lancet 2010;375:1447-56.
    1. Buse JB, Rosenstock J, Sesti G, et al. Liraglutide once a day versus exenatide twice a day for type 2 diabetes: a 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6). Lancet 2009;374:39-47.
    1. Buse JB, Nauck M, Forst T, et al. Exenatide once weekly versus liraglutide once daily in patients with type 2 diabetes (DURATION-6): a randomised, open-label study. Lancet 2013;381:117-24.
    1. Fujiwara D, Takahashi K, Suzuki T, et al. Postprandial serum C-peptide value is the optimal index to identify patients with non-obese type 2 diabetes who require multiple daily insulin injection: analysis of C-peptide values before and after short-term intensive insulin therapy. J Diabetes Investig 2013;4:618-25.
    1. Kahn SE. Clinical review 135: the importance of beta-cell failure in the development and progression of type 2 diabetes. J Clin Endocrinol Metab 2001;86:4047-58.
    1. Action to Control Cardiovascular Risk in Diabetes Study Group, Gerstein HC, Miller ME, Byington RP, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 2008;358:2545-59.
    1. ADVANCE Collaborative Group, Patel A, MacMahon S, Chalmers J, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008;358:2560-72.
    1. Schauer PR, Kashyap SR, Wolski K, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med 2012;366:1567-76.
    1. Rosenstock J, Fonseca V. Missing the point: substituting exenatide for nonoptimized insulin: going from bad to worse! Diabetes Care 2007;30:2972-3.
    1. UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ 1998;317:703-13
    1. Garber A, Henry RR, Ratner R, Hale P, Chang CT, Bode B; LEAD-3 (Mono) Study Group. Liraglutide, a once-daily human glucagon-like peptide 1 analogue, provides sustained improvements in glycaemic control and weight for 2 years as monotherapy compared with glimepiride in patients with type 2 diabetes. Diabetes Obes Metab 2011;13:348-56.
    1. Marso SP, Lindsey JB, Stolker JM, et al. Cardiovascular safety of liraglutide assessed in a patient-level pooled analysis of phase 2: 3 liraglutide clinical development studies. Diab Vasc Dis Res 2011;8:237-40.
    1. Marso SP, Poulter NR, Nissen SE, et al. Design of the liraglutide effect and action in diabetes: evaluation of cardiovascular outcome results (LEADER) trial. Am Heart J 2013;166:823-30.e5.
    1. Pfeffer MA, Diaz R, Lewis E, et al. The evaluation of lixisenatide in acute coronary syndrome—the results of the ELIXA trial. Symposium at the 75th Scientific Sessions of the American Diabetes Association; Boston, MA; 8 Jun, 2015.
    1. Robinson LE, Holt TA, Rees K, Randeva HS, O’Hare JP. Effects of exenatide and liraglutide on heart rate, blood pressure and body weight: systematic review and meta-analysis. BMJ Open 2013;3(1):pii:e001986.
    1. Egan AG, Blind E, Dunder K, et al. Pancreatic safety of incretin-based drugs—FDA and EMA assessment. N Engl J Med 2014;370:794-7.
    1. Hegedüs L, Moses AC, Zdravkovic M, Le Thi T, Daniels GH. GLP-1 and calcitonin concentration in humans: lack of evidence of calcitonin release from sequential screening in over 5000 subjects with type 2 diabetes or nondiabetic obese subjects treated with the human GLP-1 analog, liraglutide. J Clin Endocrinol Metab 2011;96:853-60.

Source: PubMed

3
Subscribe