Intestinal T lymphocyte homing is associated with gastric emptying and epithelial barrier function in critically ill: a prospective observational study

Christian Greis, Zohal Rasuly, Rolf A Janosi, Lambros Kordelas, Dietrich W Beelen, Tobias Liebregts, Christian Greis, Zohal Rasuly, Rolf A Janosi, Lambros Kordelas, Dietrich W Beelen, Tobias Liebregts

Abstract

Background: Impaired gastric emptying is common in critically ill patients. Intestinal dysmotility, a major cause of feed intolerance, may foster infectious complications due to mucosal barrier disruption. However, little is known about gut-directed immune activation, intestinal barrier function and its association with impaired gastric emptying in critically ill patients at ICU admission.

Methods: We conducted a prospective observational study at two tertiary care medical ICUs. Fifty consecutive patients needing invasive mechanical ventilation were recruited within 24 h of ICU admission, prior to any nutritional support. The acute physiology and chronic health evaluation (APACHE) II score, the sequential organ failure assessment (SOFA) score and the multiple organ dysfunction score (MODS) were used to assess illness severity and multiple organ dysfunction. Gastric emptying was assessed by paracetamol absorption test. Peripheral blood mononuclear cells were freshly isolated and cultured for 24 h, and TNF-α, IL-1β and IL-10 measured in cell culture supernatants and in serum by ELISA. The intestinal epithelial barrier was assessed, quantifying serum concentrations of intestinal fatty acid binding protein (I-FABP), ileal bile-acid binding protein (I-BABP) and zonulin-1 by ELISA. Small bowel homing T lymphocytes (CD4+ α4β7 + CCR9+) were analyzed by flow cytometry. The Mann-Whitney test and Spearman correlation were used in statistical evaluation.

Results: CD4 + α4β7 + CCR9+ T lymphocytes were inversely correlated with gastric emptying. Patients with delayed gastric emptying at ICU admission (n = 35) had significantly higher serum and PBMC-induced TNF-α and IL-1β and increased intestinal barrier disruption reflected by higher I-FABP, I-BABP and zonulin-1. Patients who died in the ICU had significantly impaired gastric empting at admission compared to ICU survivors. No differences were observed in APACHE II, SOFA or MODS in patients with delayed gastric emptying compared to patients with normal gastric emptying.

Conclusions: Exaggerated CD4 + α4β7 + CCR9+ T lymphocyte homing with increased pro-inflammatory cytokine release and intestinal epithelial barrier disruption are associated with delayed gastric emptying. This is not simply due to differences in overall severity of illness at ICU admission and may represent a pathophysiological mechanism of gut-directed immune activation leading to impaired barrier function in the critically ill.

Keywords: Critically ill; Gastric emptying; Gut homing; Intensive care; Mucosal barrier; T lymphocytes.

Figures

Fig. 1
Fig. 1
Paracetamol absorption in ICU survivors compared to non-survivors. Patients who died in the ICU had significantly lower paracetamol absorption (p = 0.004). AUC area under the curve
Fig. 2
Fig. 2
Severity of illness reflected by the acute physiology and chronic health evaluation (APACHE) II score, severity of multiple organ dysfunction assessed by the sequential organ failure assessment (SOFA) or the multiple organ dysfunction score (MODS) in patients with delayed (area under the curve (AUC) <600 min*mg/l) and normal gastric emptying (AUC ≥600 min*mg/l)
Fig. 3
Fig. 3
Percentage of CD4 + α4β7 + CCR9+ T lymphocytes was inversely correlated (r = -0.5; p = 0.001) with gastric emptying as reflected by paracetamol absorption (area under the curve (AUC) min*mg/l)
Fig. 4
Fig. 4
TNF-α and IL-1β (pg/ml) in peripheral blood mononuclear cell culture supernatants and serum of patients with delayed gastric emptying (area under the curve (AUC) <600 min*mg/l) and normal gastric emptying (AUC ≥600 min*mg/l). Error bars range, bold line median, box 5th–95th centiles)
Fig. 5
Fig. 5
Serum concentration of zonulin-1 (ZO-1), intestinal fatty acid binding protein (I-FABP) and ileal bile acid binding protein (I-BABP) in patients with delayed gastric emptying (area under the curve (AUC) <600 min*mg/l) and normal gastric emptying (AUC ≥600 min*mg/l). Error bars, bold line and box respectively represent range, median and 5th-95th centiles Error bars range, bold line median, box 5th–95th centiles)

References

    1. Gramlich L, Kichian K, Pinilla J, Rodych NJ, Dhaliwal R, Heyland DK. Does enteral nutrition compared to parenteral nutrition result in better outcomes in critically ill adult patients? A systematic review of the literature. Nutrition. 2004;20(10):843–8. doi: 10.1016/j.nut.2004.06.003.
    1. Feng Y, Ralls MW, Xiao W, Miyasaka E, Herman RS, Teitelbaum DH. Loss of enteral nutrition in a mouse model results in intestinal epithelial barrier dysfunction. Ann NY Acad Sci. 2012;1258:71–7. doi: 10.1111/j.1749-6632.2012.06572.x.
    1. Ralls MW, Demehri FR, Feng Y, Woods Ignatoski KM, Teitelbaum DH. Enteral nutrient deprivation in patients leads to a loss of intestinal epithelial barrier function. Surgery. 2015;157(4):732–42. doi: 10.1016/j.surg.2014.12.004.
    1. Nguyen NQ, Ng MP, Chapman M, Fraser RJ, Holloway RH. The impact of admission diagnosis on gastric emptying in critically ill patients. Crit Care. 2007;11(1):R16. doi: 10.1186/cc5685.
    1. Meenan J, Spaans J, Grool TA, Pals ST, Tytgat GN, van Deventer SJ. Altered expression of alpha 4 beta 7, a gut homing integrin, by circulating and mucosal T cells in colonic mucosal inflammation. Gut. 1997;40(2):241–6. doi: 10.1136/gut.40.2.241.
    1. Liebregts T, Adam B, Bredack C, Gururatsakul M, Pilkington KR, Brierley SM, et al. Small bowel homing T cells are associated with symptoms and delayed gastric emptying in functional dyspepsia. Am J Gastroenterol. 2011;106(6):1089–98. doi: 10.1038/ajg.2010.512.
    1. Oudemans-van Straaten HM, van der Voort PJ, Hoek FJ, Bosman RJ, van der Spoel JI, Zandstra DF. Pitfalls in gastrointestinal permeability measurement in ICU patients with multiple organ failure using differential sugar absorption. Intensive Care Med. 2002;28(2):130–8. doi: 10.1007/s00134-001-1140-2.
    1. Ukleja A. Altered GI, motility in critically Ill patients: current understanding of pathophysiology, clinical impact, and diagnostic approach. Nutr Clin Pract. 2010;25(1):16–25. doi: 10.1177/0884533609357568.
    1. Tarling MM, Toner CC, Withington PS, Baxter MK, Whelpton R, Goldhill DR. A model of gastric emptying using paracetamol absorption in intensive care patients. Intensive Care Med. 1997;23(3):256–60. doi: 10.1007/s001340050325.
    1. Moreira TV, McQuiggan M. Methods for the assessment of gastric emptying in critically ill, enterally fed adults. Nutr Clin Pract. 2009;24(2):261–73. doi: 10.1177/0884533609332176.
    1. Kompan L, Kremzar B, Gadzijev E, Prosek M. Effects of early enteral nutrition on intestinal permeability and the development of multiple organ failure after multiple injury. Intensive Care Med. 1999;25(2):157–61. doi: 10.1007/s001340050809.
    1. Piton G, Belon F, Cypriani B, Regnard J, Puyraveau M, Manzon C, et al. Enterocyte damage in critically ill patients is associated with shock condition and 28-day mortality. Crit Care Med. 2013;41(9):2169–76. doi: 10.1097/CCM.0b013e31828c26b5.
    1. Klaus DA, Motal MC, Burger-Klepp U, Marschalek C, Schmidt EM, Lebherz-Eichinger D, et al. Increased plasma zonulin in patients with sepsis. Biochem Med (Zagreb) 2013;23(1):107–11. doi: 10.11613/BM.2013.013.
    1. Kanda T, Fujii H, Tani T, Murakami H, Suda T, Sakai Y, et al. Intestinal fatty acid-binding protein is a useful diagnostic marker for mesenteric infarction in humans. Gastroenterology. 1996;110(2):339–43. doi: 10.1053/gast.1996.v110.pm8566578.
    1. Pelsers MM, Namiot Z, Kisielewski W, Namiot A, Januszkiewicz M, Hermens WT, et al. Intestinal-type and liver-type fatty acid-binding protein in the intestine. Tissue distribution and clinical utility. Clin Biochem. 2003;36(7):529–35. doi: 10.1016/S0009-9120(03)00096-1.
    1. Grootjans J, Thuijls G, Verdam F, Derikx JP, Lenaerts K, Buurman WA. Non-invasive assessment of barrier integrity and function of the human gut. World J Gastrointest Surg. 2010;2(3):61–9. doi: 10.4240/wjgs.v2.i3.61.
    1. Johansson-Lindbom B, Agace WW. Generation of gut-homing T cells and their localization to the small intestinal mucosa. Immunol Rev. 2007;215:226–42. doi: 10.1111/j.1600-065X.2006.00482.x.
    1. Shibahara T, Miyazaki K, Sato D, Matsui H, Yanaka A, Nakahara A, et al. Alteration of intestinal epithelial function by intraepithelial lymphocyte homing. J Gastroenterol. 2005;40(9):878–86. doi: 10.1007/s00535-005-1631-y.
    1. Engel DR, Koscielny A, Wehner S, Maurer J, Schiwon M, Franken L, et al. T helper type 1 memory cells disseminate postoperative ileus over the entire intestinal tract. Nat Med. 2010;16(12):1407–13. doi: 10.1038/nm.2255.
    1. de Jonge WJ, Van Den Wijngaard RM, The FO, ter Beek ML, Bennink RJ, Tytgat GN, et al. Postoperative ileus is maintained by intestinal immune infiltrates that activate inhibitory neural pathways in mice. Gastroenterology. 2003;125(4):1137–47. doi: 10.1016/S0016-5085(03)01197-1.
    1. Suto G, Kiraly A, Tache Y. Interleukin 1 beta inhibits gastric emptying in rats: mediation through prostaglandin and corticotropin-releasing factor. Gastroenterology. 1994;106(6):1568–75. doi: 10.1016/0016-5085(94)90412-X.
    1. Lodato RF, Khan AR, Zembowicz MJ, Weisbrodt NW, Pressley TA, Li YF, et al. Roles of IL-1 and TNF in the decreased ileal muscle contractility induced by lipopolysaccharide. Am J Physiol. 1999;276(6 Pt 1):G1356–62.
    1. Schwarz NT, Kalff JC, Turler A, Speidel N, Grandis JR, Billiar TR, et al. Selective jejunal manipulation causes postoperative pan-enteric inflammation and dysmotility. Gastroenterology. 2004;126(1):159–69. doi: 10.1053/j.gastro.2003.10.060.
    1. Turler A, Kalff JC, Moore BA, Hoffman RA, Billiar TR, Simmons RL, et al. Leukocyte-derived inducible nitric oxide synthase mediates murine postoperative ileus. Ann Surg. 2006;244(2):220–9. doi: 10.1097/01.sla.0000229963.37544.59.
    1. Feng Y, Teitelbaum DH. Tumour necrosis factor--induced loss of intestinal barrier function requires TNFR1 and TNFR2 signalling in a mouse model of total parenteral nutrition. J Physiol. 2013;591(15):3709–23. doi: 10.1113/jphysiol.2013.253518.
    1. Chapman MJ, Nguyen NQ, Deane AM. Gastrointestinal dysmotility: evidence and clinical management. Curr Opin Clin Nutr Metab Care. 2013;16(2):209–16. doi: 10.1097/MCO.0b013e32835c1fa5.
    1. Nguyen NQ, Bryant LK, Burgstad CM, Chapman M, Deane A, Bellon M, et al. Gastric emptying measurement of liquid nutrients using the (13)C-octanoate breath test in critically ill patients: a comparison with scintigraphy. Intensive Care Med. 2013;39(7):1238–46. doi: 10.1007/s00134-013-2881-4.
    1. Nguyen NQ, Chapman MJ, Fraser RJ, Bryant LK, Burgstad C, Ching K, et al. The effects of sedation on gastric emptying and intra-gastric meal distribution in critical illness. Intensive Care Med. 2008;34(3):454–60. doi: 10.1007/s00134-007-0942-2.
    1. Chapman MJ, Fraser RJ, Matthews G, Russo A, Bellon M, Besanko LK, et al. Glucose absorption and gastric emptying in critical illness. Crit Care. 2009;13(4):R140. doi: 10.1186/cc8021.
    1. Dolcetti R, Giardini R, Doglioni C, Cariati R, Pomponi F, D'Orazi C, et al. Alpha 4 beta 7 integrin expression is associated with the leukemic evolution of human and murine T-cell lymphoblastic lymphomas. Am J Pathol. 1997;150(5):1595–605.
    1. Waldman E, Lu SX, Hubbard VM, Kochman AA, Eng JM, Terwey TH, et al. Absence of beta7 integrin results in less graft-versus-host disease because of decreased homing of alloreactive T cells to intestine. Blood. 2006;107(4):1703–11. doi: 10.1182/blood-2005-08-3445.
    1. Schnorfeil FM, Lichtenegger FS, Emmerig K, Schlueter M, Neitz JS, Draenert R, et al. T cells are functionally not impaired in AML: increased PD-1 expression is only seen at time of relapse and correlates with a shift towards the memory T cell compartment. J Hematol Oncol. 2015;8:93. doi: 10.1186/s13045-015-0189-2.
    1. Lichtenegger FS, Lorenz R, Gellhaus K, Hiddemann W, Beck B, Subklewe M. Impaired NK cells and increased T regulatory cell numbers during cytotoxic maintenance therapy in AML. Leuk Res. 2014;38(8):964–9. doi: 10.1016/j.leukres.2014.05.014.
    1. Bouteloup M, Perinel S, Bourmaud A, Azoulay E, Mokart D, Darmon M. Outcomes in adult critically Ill cancer patients with and without neutropenia: a systematic review and meta-analysis of the Groupe de Recherche en Reanimation Respiratoire du patient d'Onco-Hematologie (GRRR-OH). Oncotarget. 2017;8(1):1860-870.

Source: PubMed

3
Subscribe