Lower Risk of Heart Failure and Death in Patients Initiated on Sodium-Glucose Cotransporter-2 Inhibitors Versus Other Glucose-Lowering Drugs: The CVD-REAL Study (Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors)

Mikhail Kosiborod, Matthew A Cavender, Alex Z Fu, John P Wilding, Kamlesh Khunti, Reinhard W Holl, Anna Norhammar, Kåre I Birkeland, Marit Eika Jørgensen, Marcus Thuresson, Niki Arya, Johan Bodegård, Niklas Hammar, Peter Fenici, CVD-REAL Investigators and Study Group*, Mikhail Kosiborod, Matthew A Cavender, Alex Z Fu, John P Wilding, Kamlesh Khunti, Reinhard W Holl, Anna Norhammar, Kåre I Birkeland, Marit Eika Jørgensen, Marcus Thuresson, Niki Arya, Johan Bodegård, Niklas Hammar, Peter Fenici, CVD-REAL Investigators and Study Group*

Abstract

Background: Reduction in cardiovascular death and hospitalization for heart failure (HHF) was recently reported with the sodium-glucose cotransporter-2 inhibitor (SGLT-2i) empagliflozin in patients with type 2 diabetes mellitus who have atherosclerotic cardiovascular disease. We compared HHF and death in patients newly initiated on any SGLT-2i versus other glucose-lowering drugs in 6 countries to determine if these benefits are seen in real-world practice and across SGLT-2i class.

Methods: Data were collected via medical claims, primary care/hospital records, and national registries from the United States, Norway, Denmark, Sweden, Germany, and the United Kingdom. Propensity score for SGLT-2i initiation was used to match treatment groups. Hazard ratios for HHF, death, and their combination were estimated by country and pooled to determine weighted effect size. Death data were not available for Germany.

Results: After propensity matching, there were 309 056 patients newly initiated on either SGLT-2i or other glucose-lowering drugs (154 528 patients in each treatment group). Canagliflozin, dapagliflozin, and empagliflozin accounted for 53%, 42%, and 5% of the total exposure time in the SGLT-2i class, respectively. Baseline characteristics were balanced between the 2 groups. There were 961 HHF cases during 190 164 person-years follow-up (incidence rate, 0.51/100 person-years). Of 215 622 patients in the United States, Norway, Denmark, Sweden, and the United Kingdom, death occurred in 1334 (incidence rate, 0.87/100 person-years), and HHF or death in 1983 (incidence rate, 1.38/100 person-years). Use of SGLT-2i, versus other glucose-lowering drugs, was associated with lower rates of HHF (hazard ratio, 0.61; 95% confidence interval, 0.51-0.73; P<0.001); death (hazard ratio, 0.49; 95% confidence interval, 0.41-0.57; P<0.001); and HHF or death (hazard ratio, 0.54; 95% confidence interval, 0.48-0.60; P<0.001) with no significant heterogeneity by country.

Conclusions: In this large multinational study, treatment with SGLT-2i versus other glucose-lowering drugs was associated with a lower risk of HHF and death, suggesting that the benefits seen with empagliflozin in a randomized trial may be a class effect applicable to a broad population of patients with type 2 diabetes mellitus in real-world practice.

Clinical trial registration: URL: http://www.clinicaltrials.gov. Unique identifier: NCT02993614.

Keywords: canagliflozin; dapagliflozin; death; diabetes mellitus; empagliflozin; heart failure; sodium glucose transporter 2.

© 2017 The Authors.

Figures

Figure 1.
Figure 1.
Patient flow chart for all countries/databases combined. A large number of patients were excluded from the other GLD group because of the protocol mandated 1:1 match, and given the smaller number of patients in the SGLT-2i group. GLD indicates glucose-lowering drug; and SGLT-2i, sodium-glucose cotransporter-2 inhibitor.
Figure 2.
Figure 2.
Contribution of the SGLT-2 inhibitor class as a proportion of exposure time in the propensity-match cohorts. A, All countries combined. B, United States only. C, European countries combined. HHF indicates hospitalization for heart failure; and SGLT-2, sodium-glucose cotransporter-2.
Figure 3.
Figure 3.
Hazard ratios and 95% CI for the outcome of HHF.A, On treatment, unadjusted. B, On treatment, adjusted (model adjusted for history of heart failure, age, sex, frailty, history of myocardial infarction, history of atrial fibrillation, hypertension, obesity/body mass index, duration of diabetes mellitus, ACE inhibitor or ARB use, β-blocker or α-blocker use, Ca2+ channel blocker use, loop diuretic use, thiazide diuretic use). C, Intent-to-treat, unadjusted. ACE indicates angiotensin-converting enzyme; ARB, angiotensin II receptor blocker; CI, confidence interval; CPRD, Clinical Practice Research Datalink; DPV, Diabetes Patientenverlaufsdokumentation (Diabetes Prospective Follow-Up); HHF, hospitalization for heart failure; oGLD, other glucose-lowering drugs; SGLT-2i, sodium-glucose cotransporter-2 inhibitor; and THIN, The Health Improvement Network.
Figure 4.
Figure 4.
Hazard ratios and 95% CI for the outcome of all-cause death and composite of hospitalization for heart failure or all-cause death.A, All-cause death: on treatment, unadjusted. B, All-cause death: on treatment, adjusted (model adjusted for history of heart failure, age, sex, frailty, history of myocardial infarction, history of atrial fibrillation, hypertension, obesity/body mass index, duration of diabetes mellitus, ACE inhibitor or ARB use, β-blocker or α-blocker use, Ca2+ channel blocker use, loop diuretic use, thiazide diuretic use). C, All-cause death: intent-to-treat, unadjusted. D, Hospitalization for heart failure or all-cause death: on treatment, unadjusted. E, Hospitalization for heart failure or all-cause death: on treatment, adjusted (model adjusted for history of heart failure, age, sex, frailty, history of myocardial infarction, history of atrial fibrillation, hypertension, obesity/body mass index, duration of diabetes mellitus, ACE inhibitor or ARB use, β-blocker or α-blocker use, Ca2+ channel blocker use, loop diuretic use, thiazide diuretic use). F, Hospitalization for heart failure or all-cause death: intent-to-treat, unadjusted. ACE indicates angiotensin-converting enzyme; ARB, angiotensin II receptor blocker; CI, confidence interval; CPRD, Clinical Practice Research Datalink; DPV, Diabetes Patientenverlaufsdokumentation (Diabetes Prospective Follow-Up); oGLD, other glucose-lowering drugs; SGLT-2i, sodium-glucose cotransporter-2 inhibitor; and THIN, The Health Improvement Network.

References

    1. Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, Di Angelantonio E, Ingelsson E, Lawlor DA, Selvin E, Stampfer M, Stehouwer CD, Lewington S, Pennells L, Thompson A, Sattar N, White IR, Ray KK, Danesh J Emerging Risk Factors Collaboration. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375:2215–2222. doi: 10.1016/S0140-6736(10)60484-9.
    1. Schocken DD, Benjamin EJ, Fonarow GC, Krumholz HM, Levy D, Mensah GA, Narula J, Shor ES, Young JB, Hong Y American Heart Association Council on Epidemiology and Prevention; American Heart Association Council on Clinical Cardiology; American Heart Association Council on Cardiovascular Nursing; American Heart Association Council on High Blood Pressure Research; Quality of Care and Outcomes Research Interdisciplinary Working Group; Functional Genomics and Translational Biology Interdisciplinary Working Group. Prevention of heart failure: a scientific statement from the American Heart Association Councils on Epidemiology and Prevention, Clinical Cardiology, Cardiovascular Nursing, and High Blood Pressure Research; Quality of Care and Outcomes Research Interdisciplinary Working Group; and Functional Genomics and Translational Biology Interdisciplinary Working Group. Circulation. 2008;117:2544–2565. doi: 10.1161/CIRCULATIONAHA.107.188965.
    1. Di Angelantonio E, Kaptoge S, Wormser D, Willeit P, Butterworth AS, Bansal N, O’Keeffe LM, Gao P, Wood AM, Burgess S, Freitag DF, Pennells L, Peters SA, Hart CL, Håheim LL, Gillum RF, Nordestgaard BG, Psaty BM, Yeap BB, Knuiman MW, Nietert PJ, Kauhanen J, Salonen JT, Kuller LH, Simons LA, van der Schouw YT, Barrett-Connor E, Selmer R, Crespo CJ, Rodriguez B, Verschuren WM, Salomaa V, Svärdsudd K, van der Harst P, Björkelund C, Wilhelmsen L, Wallace RB, Brenner H, Amouyel P, Barr EL, Iso H, Onat A, Trevisan M, D’Agostino RB, Sr, Cooper C, Kavousi M, Welin L, Roussel R, Hu FB, Sato S, Davidson KW, Howard BV, Leening MJ, Leening M, Rosengren A, Dörr M, Deeg DJ, Kiechl S, Stehouwer CD, Nissinen A, Giampaoli S, Donfrancesco C, Kromhout D, Price JF, Peters A, Meade TW, Casiglia E, Lawlor DA, Gallacher J, Nagel D, Franco OH, Assmann G, Dagenais GR, Jukema JW, Sundström J, Woodward M, Brunner EJ, Khaw KT, Wareham NJ, Whitsel EA, Njølstad I, Hedblad B, Wassertheil-Smoller S, Engström G, Rosamond WD, Selvin E, Sattar N, Thompson SG, Danesh J Emerging Risk Factors Collaboration. Association of cardiometabolic multimorbidity with mortality. JAMA. 2015;314:52–60. doi: 10.1001/jama.2015.7008.
    1. Kannel WB, Hjortland M, Castelli WP. Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol. 1974;34:29–34.
    1. IDF Diabetes Atlas Group. Update of mortality attributable to diabetes for the IDF diabetes atlas: estimates for the year 2011. Diabetes Res Clin Pract. 2013;100:277–279. doi: 10.1016/j.diabres.2013.02.005.
    1. NCD Risk Factor Collaboration (NCD-RisC) Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet. 2016;387:1513–1530. doi: 10.1016/S0140-6736(16)00618-8.
    1. Tancredi M, Rosengren A, Svensson AM, Kosiborod M, Pivodic A, Gudbjörnsdottir S, Wedel H, Clements M, Dahlqvist S, Lind M. Excess mortality among persons with type 2 diabetes. N Engl J Med. 2015;373:1720–1732. doi: 10.1056/NEJMoa1504347.
    1. Cavender MA, Steg PG, Smith SC, Jr, Eagle K, Ohman EM, Goto S, Kuder J, Im K, Wilson PW, Bhatt DL REACH Registry Investigators. Impact of diabetes mellitus on hospitalization for heart failure, cardiovascular events, and death: outcomes at 4 years from the Reduction of Atherothrombosis for Continued Health (REACH) Registry. Circulation. 2015;132:923–931. doi: 10.1161/CIRCULATIONAHA.114.014796.
    1. Fitchett D, Zinman B, Wanner C, Lachin JM, Hantel S, Salsali A, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE EMPA-REG OUTCOME® trial investigators. Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME® trial. Eur Heart J. 2016;37:1526–1534. doi: 10.1093/eurheartj/ehv728.
    1. Green JB, Bethel MA, Armstrong PW, Buse JB, Engel SS, Garg J, Josse R, Kaufman KD, Koglin J, Korn S, Lachin JM, McGuire DK, Pencina MJ, Standl E, Stein PP, Suryawanshi S, Van de Werf F, Peterson ED, Holman RR. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2015;373:232–242. doi: 10.1056/NEJMoa1501352.
    1. Bertoni AG, Hundley WG, Massing MW, Bonds DE, Burke GL, Goff DC., Jr. Heart failure prevalence, incidence, and mortality in the elderly with diabetes. Diabetes Care. 2004;27:699–703.
    1. Matsushita K, Blecker S, Pazin-Filho A, Bertoni A, Chang PP, Coresh J, Selvin E. The association of hemoglobin A1c with incident heart failure among people without diabetes: the atherosclerosis risk in communities study. Diabetes. 2010;59:2020–2026. doi: 10.2337/db10-0165.
    1. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE EMPA-REG OUTCOME Investigators. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–2128. doi: 10.1056/NEJMoa1504720.
    1. Håheim LL, Helgeland J. Agreement between referral information and discharge diagnoses according to Norwegian elective treatment guidelines - a cross-sectional study. BMC Health Serv Res. 2014;14:493. doi: 10.1186/s12913-014-0493-5.
    1. Ludvigsson JF, Andersson E, Ekbom A, Feychting M, Kim JL, Reuterwall C, Heurgren M, Olausson PO. External review and validation of the Swedish national inpatient register. BMC Public Health. 2011;11:450. doi: 10.1186/1471-2458-11-450.
    1. Norhammar A, Bodegard J, Nystrom T, Thuresson M, Eriksson JW, Nathanson D. Incidence, prevalence and mortality of type 2 diabetes requiring glucose-lowering treatment, and associated risks of cardiovascular complications: a nationwide study in Sweden, 2006–2013. Diabetologia. 2016;59:1692–1701. doi: 10.1007/s00125-016-3971-y.
    1. Sundbøll J, Adelborg K, Munch T, Frøslev T, Sørensen HT, Bøtker HE, Schmidt M. Positive predictive value of cardiovascular diagnoses in the Danish National Patient Registry: a validation study. BMJ Open. 2016;6:e012832. doi: 10.1136/bmjopen-2016-012832.
    1. Lee DS, Donovan L, Austin PC, Gong Y, Liu PP, Rouleau JL, Tu JV. Comparison of coding of heart failure and comorbidities in administrative and clinical data for use in outcomes research. Med Care. 2005;43:182–188.
    1. Okumura N, Jhund PS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau JL, Shi VC, Swedberg K, Zile MR, Solomon SD, Packer M, McMurray JJ PARADIGM-HF Investigators and Committees*. Importance of clinical worsening of heart failure treated in the outpatient setting: evidence from the Prospective Comparison of ARNI With ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure Trial (PARADIGM-HF). Circulation. 2016;133:2254–2262. doi: 10.1161/CIRCULATIONAHA.115.020729.
    1. Brynildsen J, Høiseth AD, Nygård S, Hagve TA, Christensen G, Omland T, Røsjø H. [Diagnostic accuracy for heart failure – data from the Akershus Cardiac Examination 2 Study]. Tidsskr Nor Laegeforen. 2015;135:1738–1744. doi: 10.4045/tidsskr.14.1174.
    1. Kümler T, Gislason GH, Kirk V, Bay M, Nielsen OW, Køber L, Torp-Pedersen C. Accuracy of a heart failure diagnosis in administrative registers. Eur J Heart Fail. 2008;10:658–660. doi: 10.1016/j.ejheart.2008.05.006.
    1. Ingelsson E, Arnlöv J, Sundström J, Lind L. The validity of a diagnosis of heart failure in a hospital discharge register. Eur J Heart Fail. 2005;7:787–791. doi: 10.1016/j.ejheart.2004.12.007.
    1. Stuart EA. Matching methods for causal inference: a review and a look forward. Stat Sci. 2010;25:1–21. doi: 10.1214/09-STS313.
    1. Normand ST, Landrum MB, Guadagnoli E, Ayanian JZ, Ryan TJ, Cleary PD, McNeil BJ. Validating recommendations for coronary angiography following acute myocardial infarction in the elderly: a matched analysis using propensity scores. J Clin Epidemiol. 2001;54:387–398.
    1. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–188.
    1. Viechtbauer W. Conducting meta-analyses in r with the metafor package. J Stat Softw. 2010;36:1–48.
    1. Hernán MA, Alonso A, Logan R, Grodstein F, Michels KB, Willett WC, Manson JE, Robins JM. Observational studies analyzed like randomized experiments: an application to postmenopausal hormone therapy and coronary heart disease. Epidemiology. 2008;19:766–779. doi: 10.1097/EDE.0b013e3181875e61.
    1. Hernán MA, Hernández-Díaz S. Beyond the intention-to-treat in comparative effectiveness research. Clin Trials. 2012;9:48–55. doi: 10.1177/1740774511420743.
    1. Prentice RL, Pettinger M, Anderson GL. Statistical issues arising in the Women’s Health Initiative. Biometrics. 2005;61:899–911. discussion 911. doi: 10.1111/j.0006-341X.2005.454_1.x.
    1. Neal B, Perkovic V, Mahaffey KW, Fulcher G, Erondu N, Desai M, Shaw W, Law G, Walton MK, Rosenthal N, de Zeeuw D, Matthews DR on behalf of the CANVAS Program collaborative group. Optimising the analysis strategy for the canvas program – a pre-specified plan for the integrated analyses of the canvas and canvas-r trials. Diabetes Obes Metab. 2017 doi: 10.1111/dom.12924.
    1. Sherman RE, Anderson SA, Dal Pan GJ, Gray GW, Gross T, Hunter NL, LaVange L, Marinac-Dabic D, Marks PW, Robb MA, Shuren J, Temple R, Woodcock J, Yue LQ, Califf RM. Real-world evidence - what is it and what can it tell us? N Engl J Med. 2016;375:2293–2297. doi: 10.1056/NEJMsb1609216.
    1. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Devices and Radiological Health, Center for Biologics Evaluation and Research. Use of Real-World Evidence to Support Regulatory Decision-Making for Medical Devices. Draft Guidance for Industry and Food and Drug Administration Staff. Rockville, MD: Food and Drug Administration; September 16, 2016. . Accessed May 12, 2017.
    1. European Commission; Directorate-General for Health and Food Safety. Brussels, Belgium: European Commission; STAMP Commission Expert Group. Real world evidence. March 10, 2016. . Accessed May 12, 2017.
    1. Califf RM, Robb MA, Bindman AB, Briggs JP, Collins FS, Conway PH, Coster TS, Cunningham FE, De Lew N, DeSalvo KB, Dymek C, Dzau VJ, Fleurence RL, Frank RG, Gaziano JM, Kaufmann P, Lauer M, Marks PW, McGinnis JM, Richards C, Selby JV, Shulkin DJ, Shuren J, Slavitt AM, Smith SR, Washington BV, White PJ, Woodcock J, Woodson J, Sherman RE. Transforming evidence generation to support health and health care decisions. N Engl J Med. 2016;375:2395–2400. doi: 10.1056/NEJMsb1610128.
    1. Nystrom T, Bodegard J, Nathanson D, Thuresson M, Norhammar A, Eriksson JW. Novel oral glucose-lowering drugs compared to insulin are associated with lower risk of all-cause mortality, cardiovascular events and severe hypoglycemia in type 2 diabetes patients [published online ahead of print January 24, 2017]. Diabetes Obes Metab. doi: 10.1111/dom.12889.
    1. Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, Ohman P, Frederich R, Wiviott SD, Hoffman EB, Cavender MA, Udell JA, Desai NR, Mosenzon O, McGuire DK, Ray KK, Leiter LA, Raz I SAVOR-TIMI 53 Steering Committee and Investigators. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369:1317–1326. doi: 10.1056/NEJMoa1307684.
    1. Heerspink HJ, Perkins BA, Fitchett DH, Husain M, Cherney DZ. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation. 2016;134:752–772. doi: 10.1161/CIRCULATIONAHA.116.021887.
    1. Marx N, McGuire DK. Sodium-glucose cotransporter-2 inhibition for the reduction of cardiovascular events in high-risk patients with diabetes mellitus. Eur Heart J. 2016;37:3192–3200. doi: 10.1093/eurheartj/ehw110.
    1. Sattar N, McLaren J, Kristensen SL, Preiss D, McMurray JJ. SGLT2 Inhibition and cardiovascular events: why did EMPA-REG Outcomes surprise and what were the likely mechanisms? Diabetologia. 2016;59:1333–1339. doi: 10.1007/s00125-016-3956-x.

Source: PubMed

3
Subscribe