A Phase 1 study of gefitinib combined with durvalumab in EGFR TKI-naive patients with EGFR mutation-positive locally advanced/metastatic non-small-cell lung cancer

Benjamin C Creelan, Tammie C Yeh, Sang-We Kim, Naoyuki Nogami, Dong-Wan Kim, Laura Q M Chow, Shintaro Kanda, Rosemary Taylor, Weifeng Tang, Mei Tang, Helen K Angell, Martine P Roudier, Marcelo Marotti, Don L Gibbons, Benjamin C Creelan, Tammie C Yeh, Sang-We Kim, Naoyuki Nogami, Dong-Wan Kim, Laura Q M Chow, Shintaro Kanda, Rosemary Taylor, Weifeng Tang, Mei Tang, Helen K Angell, Martine P Roudier, Marcelo Marotti, Don L Gibbons

Abstract

Background: EGFR tyrosine kinase inhibitors (TKIs) induce cytolysis and release of tumour proteins, which can stimulate antigen-specific T cells. The safety and efficacy of durvalumab and gefitinib in combination for TKI-naive patients with advanced EGFRm NSCLC was evaluated.

Methods: This Phase 1 open-label, multicentre trial (NCT02088112) was conducted in 56 patients with NSCLC. Dose expansion permitted TKI-naive patients, primarily with activating L858R or Ex19del EGFRm. Arms 1 + 1a received concurrent therapy; Arm 2 received 4 weeks of gefitinib induction followed by concurrent therapy.

Results: From dose escalation, the recommended dose of durvalumab was 10 mg/kg Q2W with 250 mg QD gefitinib. Pharmacokinetics were as expected, consistent with inhibition of soluble PD-L1 and no treatment-emergent immunogenicity. In dose expansion, 35% of patients had elevated liver enzymes leading to drug discontinuation. In Arms 1 + 1a, objective response rate was 63.3% (95% CI: 43.9-80.1), median progression-free survival (PFS) was 10.1 months (95% CI: 5.5-15.2) and median response duration was 9.2 months (95% CI: 3.7-14.0).

Conclusions: Durvalumab and gefitinib in combination had higher toxicity than either agent alone. No significant increase in PFS was detected compared with historical controls. Therefore, concurrent PD-L1 inhibitors with gefitinib should be generally avoided in TKI-naive patients with EGFRm NSCLC.

Conflict of interest statement

B.C.C. has received institutional research grants/supplies from Biodesix, Boehringer Ingelheim, Bristol-Myers Squibb, Iovance Biotherapeutics, Neogenomics and Prometheus; participated in speaker bureaus for Achilles, AstraZeneca, Bristol-Myers Squibb, Foundation Medicine, F. Hoffmann-La Roche AG, Gilead and Takeda; and has participated in advisory boards for AbbVie, BergenBio, Bristol-Myers Squibb and GlaxoSmithKline. T.C.Y., R.T., W.T. and H.K.A. are employees or contracted employees of AstraZeneca and may be shareholders of AstraZeneca. S.-W.K. has received clinical research support from AstraZeneca, Boehringer Ingelheim and Eli Lilly. N.N. has received research grants from AstraZeneca, Boehringer Ingelheim, Chugai Pharmaceutical, Kyowa Hakko Kirin, ONO Pharmaceutical and Taiho Pharmaceutical and personal fees from AstraZeneca, Boehringer Ingelheim, Bristol-Myers Squibb, Chugai Pharmaceutical, Eli Lilly Japan, Kyowa Hakko Kirin, Meiji Seika Pharma, Merck Sharp & Dohme, Nikkei Business Publications, ONO Pharmaceutical, Pfizer Japan, Reno Medical and Taiho Pharmaceutical. D.-W.K’s institution has received research funding from Alpha Biopharma, AstraZeneca/MedImmune, Hanmi, Janssen, Merus, Mirati Therapeutics, MSD, Novartis, ONO Pharmaceutical, Pfizer Inc., Roche/Genentech, Takeda, TP Therapeutics, Xcovery and Yuhan. L.Q.M.C. is an employee of the University of Texas, Austin and a former employee of the University of Washington/Seattle Cancer Care Alliance. L.Q.M.C’s institution has received research funding from Alkermes, AstraZeneca/MedImmune, Bristol-Myers Squibb, Dynavax, Eli Lilly, Genentech, Incyte, Merck, Novartis, Pfizer Inc., Seattle Genetics and VentiRx; and the University of Washington/Seattle Cancer Care Alliance received institutional funding from AstraZeneca for this study. L.Q.M.C. has received honoraria from Amgen and has participated in advisory boards for Alkermes, Amgen, AstraZeneca, Bristol-Myers Squibb, Dynavax, Genentech, Merck, Novartis, Pfizer Inc., Sanofi Genzyme, Seattle Genetics, Synthorx and Takeda. S.K. has received research grant funding from AbbVie, AstraZeneca and ONO Pharmaceutical; honoraria from AstraZeneca, Bristol-Myers Squibb, Chugai Pharmaceutical, Novartis and ONO Pharmaceutical; and has participated in advisory boards for AstraZeneca. M.T. is an employee of Astellas Pharma US and a former employee of AstraZeneca. M.P.R. is an employee of the Institute for Prostate Cancer Research and a former employee of AstraZeneca. M.M. is a former employee of AstraZeneca. D.L.G. has received research grants from AstraZeneca, Janssen Research & Development and Takeda; has participated in advisory boards for AstraZeneca, GlaxoSmithKline and Sanofi; and has received travel expenses from AstraZeneca. D.L.G’s institution has received compensation for conducting the study.

Figures

Fig. 1. Study design.
Fig. 1. Study design.
d days, EGFR epidermal growth factor receptor, IV intravenous, N number of patients assigned to treatment, NSCLC non-small cell lung cancer, QD once daily, Q2W once every 2 weeks, TKI tyrosine kinase inhibitor.
Fig. 2. Adverse events of special interest…
Fig. 2. Adverse events of special interest by CTCAE grade (safety population, dose escalation and expansion).
Maximum CTCAE grade is shown for all cohorts, including Cohort A (N = 3), Cohort B (N = 7), Japan Cohort (N = 6), Arm 1 (N = 10), Arm 1a (N = 20) and Arm 2 (N = 10). CTCAE Common Terminology Criteria for Adverse Events, N number of patients assigned to treatment.
Fig. 3. Progression-free survival and duration of…
Fig. 3. Progression-free survival and duration of response.
a Overall and b by PD-L1 expression (tumour response analysis set). PD-L1 TC expression (high: ≥20%; low/negative: <20%) was determined at baseline. CI confidence interval, DoR duration of response, NC not calculable, PD-L1 programmed cell death ligand-1, PFS progression-free survival, TC tumour cell.
Fig. 4. PFS for individual patients in…
Fig. 4. PFS for individual patients in the dose-expansion phase (tumour response analysis set).
Baseline PD-L1 TC ≥20% was indicative of high PD-L1 expression. AE adverse event, EGFR epidermal growth factor receptor, H high (PD-L1 TC ≥20%), L low/negative (PD-L1 TC

References

    1. Soria JC, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, Lee KH, et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N. Engl. J. Med. 2018;378:113–125. doi: 10.1056/NEJMoa1713137.
    1. Schuler M, Yang JC, Park K, Kim JH, Bennouna J, Chen YM, et al. Afatinib beyond progression in patients with non-small-cell lung cancer following chemotherapy, erlotinib/gefitinib and afatinib: Phase III randomized LUX-Lung 5 trial. Ann. Oncol. 2016;27:417–423. doi: 10.1093/annonc/mdv597.
    1. Yang JC, Wu YL, Schuler M, Sebastian M, Popat S, Yamamoto N, et al. Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol. 2015;16:141–151. doi: 10.1016/S1470-2045(14)71173-8.
    1. Creelan, B., Gray, J., Lima, D., Antonia, S., Chiappori, A., Tanvetyanon, T. et al. Abstract CT060. Efficacy, safety and tolerability of dasatinib combined with afatinib: a phase I trial in patients with epidermal growth factor receptor mutant (EGFRm) advanced non-small-cell lung cancer (NSCLC) after acquired tyrosine kinase inhibitor (TKI) resistance. Cancer Res. 76, CT060 (2016).
    1. Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 2009;361:947–957. doi: 10.1056/NEJMoa0810699.
    1. Rosell, R., Gervais, R., Vergnenegre, A., Massuti, B., Felip, E., Cardenal, F. et al. Erlotinib versus chemotherapy (CT) in advanced non-small cell lung cancer (NSCLC) patients (p) with epidermal growth factor receptor (EGFR) mutations: interim results of the European Erlotinib Versus Chemotherapy (EURTAC) phase III randomized trial. J. Clin. Oncol. 29, 7503 (2011).
    1. Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N. Engl. J. Med. 2010;362:2380–2388. doi: 10.1056/NEJMoa0909530.
    1. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med. 2015;373:1627–1639. doi: 10.1056/NEJMoa1507643.
    1. Herbst RS, Baas P, Kim DW, Felip E, Pérez-Gracia JL, Han JY, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387:1540–1550. doi: 10.1016/S0140-6736(15)01281-7.
    1. Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389:255–265. doi: 10.1016/S0140-6736(16)32517-X.
    1. Gettinger S, Hellmann M, Chow L, Borghaei H, Antonia S, Brahmer J, et al. Nivolumab plus erlotinib in patients with EGFR-mutant advanced NSCLC. J. Thorac. Oncol. 2018;13:1363–1372. doi: 10.1016/j.jtho.2018.05.015.
    1. Hellmann MD, Rizvi NA, Goldman JW, Gettinger SN, Borghaei H, Brahmer JR, et al. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1, multicohort study. Lancet Oncol. 2017;18:31–41. doi: 10.1016/S1470-2045(16)30624-6.
    1. Li X, Lian Z, Wang S, Xing L, Yu J. Interactions between EGFR and PD-1/PD-L1 pathway: implications for treatment of NSCLC. Cancer Lett. 2018;418:1–9. doi: 10.1016/j.canlet.2018.01.005.
    1. Jia J, Li X, Jiang T, Zhao S, Zhao C, Zhang L, et al. EGFR-targeted therapy alters the tumor microenvironment in EGFR-driven lung tumors: implications for combination therapies. Int. J. Cancer. 2019;145:1432–1444. doi: 10.1002/ijc.32191.
    1. Lizotte PH, Hong R-L, Luster TA, Cavanaugh ME, Taus LJ, Wang S, et al. A high-throughput immune-oncology screen identifies EGFR inhibitors as potent enhancers of antigen-specific cytotoxic T-lymphocyte tumor cell killing. Cancer Immunol. Res. 2018;6:1511–1523. doi: 10.1158/2326-6066.CIR-18-0193.
    1. Lulli D, Carbone ML, Pastore S. Epidermal growth factor receptor inhibitors trigger a type I interferon response in human skin. Oncotarget. 2016;7:47777–47793. doi: 10.18632/oncotarget.10013.
    1. Thress K, Jacobs V, Angell H, Yang J, Sequist L, Blackhall F, et al. Modulation of biomarker expression by osimertinib: results of the paired tumor biopsy cohorts of the AURA phase I trial. J. Thorac. Oncol. 2017;12:1588–1594. doi: 10.1016/j.jtho.2017.07.011.
    1. Pollack BP, Sapkota B, Cartee TV. Epidermal growth factor receptor inhibition augments the expression of MHC class I and II genes. Clin. Cancer Res. 2011;17:4400–4413. doi: 10.1158/1078-0432.CCR-10-3283.
    1. Kumai T, Matsuda Y, Oikawa K, Aoki N, Kimura S, Harabuchi Y, et al. EGFR inhibitors augment antitumour helper T-cell responses of HER family-specific immunotherapy. Br. J. Cancer. 2013;109:2155–2166. doi: 10.1038/bjc.2013.577.
    1. Champiat S, Ileana E, Giaccone G, Besse B, Mountzios G, Eggermont A, et al. Incorporating immune-checkpoint inhibitors into systemic therapy of NSCLC. J. Thorac. Oncol. 2014;9:144–153. doi: 10.1097/JTO.0000000000000074.
    1. Gurule NJ, Heasley LE. Linking tyrosine kinase inhibitor-mediated inflammation with normal epithelial cell homeostasis and tumor therapeutic responses. Cancer Drug Resist. 2018;1:118–125.
    1. Kunimasa K, Nakamura H, Sakai K, Kimura M, Inoue T, Tamiya M, et al. Heterogeneity of EGFR-mutant clones and PD-L1 highly expressing clones affects treatment efficacy of EGFR-TKI and PD-1 inhibitor. Ann. Oncol. 2018;29:2145–2147. doi: 10.1093/annonc/mdy312.
    1. Gainor JF, Shaw AT, Sequist LV, Fu X, Azzoli CG, Piotrowska Z, et al. EGFR mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non-small cell lung cancer: a retrospective analysis. Clin. Cancer Res. 2016;22:4585–4593. doi: 10.1158/1078-0432.CCR-15-3101.
    1. D’Incecco A, Andreozzi M, Ludovini V, Rossi E, Capodanno A, Landi L, et al. PD-1 and PD-L1 expression in molecularly selected non-small-cell lung cancer patients. Br. J. Cancer. 2015;112:95–102. doi: 10.1038/bjc.2014.555.
    1. Schmidt L, Kümmel A, Görlich D, Mohr M, Bröckling S, Mikesch J, et al. PD-1 and PD-L1 expression in NSCLC indicate a favorable prognosis in defined subgroups. PLoS ONE. 2015;10:e0136023. doi: 10.1371/journal.pone.0136023.
    1. Tang Y, Fang W, Zhang Y, Hong S, Kang S, Yan Y, et al. The association between PD-L1 and EGFR status and the prognostic value of PD-L1 in advanced non-small cell lung cancer patients treated with EGFR-TKIs. Oncotarget. 2015;6:14209–14219. doi: 10.18632/oncotarget.3694.
    1. Su S, Dong Z-Y, Xie Z, Yan L-X, Li Y-F, Su J, et al. Strong programmed death ligand 1 expression predicts poor response and de novo resistance to EGFR tyrosine kinase inhibitors among NSCLC patients with EGFR mutation. J. Thorac. Oncol. 2018;13:1668–1675. doi: 10.1016/j.jtho.2018.07.016.
    1. Offin M, Rizvi H, Tenet M, Ni A, Sanchez-Vega F, Li BT, et al. Tumor mutation burden and efficacy of EGFR-tyrosine kinase inhibitors in patients with EGFR-mutant lung cancers. Clin. Cancer Res. 2019;25:1063–1069. doi: 10.1158/1078-0432.CCR-18-1102.
    1. Stewart R, Morrow M, Hammond SA, Mulgrew K, Marcus D, Poon E, et al. Identification and characterization of MEDI4736, an antagonistic anti-PD-L1 monoclonal antibody. Cancer Immunol. Res. 2015;3:1052–1062. doi: 10.1158/2326-6066.CIR-14-0191.
    1. Garassino MC, Cho BC, Kim JH, Mazières J, Vansteenkiste J, Lena H, et al. Durvalumab as third-line or later treatment for advanced non-small-cell lung cancer (ATLANTIC): an open-label, single-arm, phase 2 study. Lancet Oncol. 2018;19:521–536. doi: 10.1016/S1470-2045(18)30144-X.
    1. Wolf M, Swaisland H, Averbuch S. Development of the novel biologically targeted anticancer agent gefitinib: determining the optimum dose for clinical efficacy. Clin. Cancer Res. 2004;10:4607–4613. doi: 10.1158/1078-0432.CCR-04-0058.
    1. He S, Yin T, Li D, Gao X, Wan Y, Ma X, et al. Enhanced interaction between natural killer cells and lung cancer cells: involvement in gefitinib-mediated immunoregulation. J. Transl. Med. 2013;11:1–11. doi: 10.1186/1479-5876-11-1.
    1. Edge, S., Byrd, D. R., Compton, C. C., Fritz, A. G., Greene, F. L. & Trotti, A. AJCC Cancer Staging Manual 7th edn (Springer, New York, NY, 2010).
    1. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1) Eur. J. Cancer. 2009;45:228–247. doi: 10.1016/j.ejca.2008.10.026.
    1. Rebelatto M, Midha A, Mistry A, Sabalos C, Schechter N, Li X, et al. Development of a programmed cell death ligand-1 immunohistochemical assay validated for analysis of non-small cell lung cancer and head and neck squamous cell carcinoma. Diagn. Pathol. 2016;11:95. doi: 10.1186/s13000-016-0545-8.
    1. Roche. VENTANA PD-L1 (SP263) assay (CE IVD). (2020).
    1. Baverel P, Dubois V, Jin C, Zheng Y, Song X, Jin X, et al. Population pharmacokinetics of durvalumab in cancer patients and association with longitudinal biomarkers of disease status. Clin. Pharmacol. Ther. 2018;103:631–642. doi: 10.1002/cpt.982.
    1. Swaisland HC, Smith RP, Laight A, Kerr DJ, Ranson M, Wilder-Smith CH, et al. Single-dose clinical pharmacokinetic studies of gefitinib. Clin. Pharmacokinet. 2005;44:1165–1177. doi: 10.2165/00003088-200544110-00004.
    1. Douillard J-Y, Ostoros G, Cobo M, Ciuleanu T, McCormack R, Webster A, et al. First-line gefitinib in Caucasian EGFR mutation-positive NSCLC patients: a phase-IV, open label, single arm study. Br. J. Cancer. 2014;110:55–62. doi: 10.1038/bjc.2013.721.
    1. Rudin, C., Cervantes, A., Dowlati, A., Besse, B., Ma, B., Costa, D. et al. Abstract MA15.02 Long-term safety and clinical activity results from a Phase Ib study of erlotinib plus atezolizumab in advanced NSCLC. J. Thorac. Oncol. 13, MA15.02 (2018).
    1. Yang J, Gadgeel S, Sequist L, Wu C, Papadimitrakopoulou V, Su W, et al. Pembrolizumab in combination with erlotinib or gefitinib as first-line therapy for advanced NSCLC with sensitizing EGFR mutation. J. Thorac. Oncol. 2019;14:553–559. doi: 10.1016/j.jtho.2018.11.028.
    1. Teo Y, Ho H, Chan A. Formation of reactive metabolites and management of tyrosine kinase inhibitor-induced hepatotoxicity: a literature review. Expert Opin. Drug Metab. Toxicol. 2015;11:231–242. doi: 10.1517/17425255.2015.983075.
    1. US Food and Drug Administration. Osimertinib highlights of prescribing information. (2018).
    1. Ahn, M.-J., Yang, J., Yu, H., Saka, H., Ramalingam, S., Goto, K. et al. Abstract 136O: Osimertinib combined with durvalumab in EGFR-mutant non-small cell lung cancer: results from the TATTON phase Ib trial. J. Thorac. Oncol. 11, 136O (2016).
    1. Chih-Hsin Yang J, Shepherd F, Kim D, Lee G, Lee J, Chang G, et al. Osimertinib plus durvalumab versus osimertinib monotherapy in EGFR T790M-positive NSCLC following previous EGFR-TKI therapy: CAURAL brief report. J. Thorac. Oncol. 2019;14:933–939. doi: 10.1016/j.jtho.2019.02.001.
    1. Spigel DR, Reynolds C, Waterhouse D, Garon EB, Chandler J, Babu S, et al. Phase 1/2 study of the safety and tolerability of nivolumab plus crizotinib for the first-line treatment of anaplastic lymphoma kinase translocation - positive advanced non-small cell lung cancer (CheckMate 370) J. Thorac. Oncol. 2018;13:682–688. doi: 10.1016/j.jtho.2018.02.022.
    1. Lisberg A, Cummings A, Goldman JW, Bornazyan K, Reese N, Wang T, et al. A Phase II study of pembrolizumab in EGFR-mutant, PD-L1+, tyrosine kinase inhibitor naïve patients with advanced NSCLC. J. Thorac. Oncol. 2018;13:1138–1145. doi: 10.1016/j.jtho.2018.03.035.
    1. Brown, H., Vansteenkiste, J., Nakagawa, K., Cobo Dols, M., John, T., Barker, C. et al. MA15.03 PD-L1 expression in untreated EGFRm advanced NSCLC and response to osimertinib and SoC EGFR-TKIs in the FLAURA trial. J. Thorac. Oncol. 13, MA15.03 (2018).

Source: PubMed

3
Subscribe