Genome Insight and Comparative Pathogenomic Analysis of Nesterenkonia jeotgali Strain CD08_7 Isolated from Duodenal Mucosa of Celiac Disease Patient

Atul M Chander, Ramesan G Nair, Gurwinder Kaur, Rakesh Kochhar, Devinder K Dhawan, Sanjay K Bhadada, Shanmugam Mayilraj, Atul M Chander, Ramesan G Nair, Gurwinder Kaur, Rakesh Kochhar, Devinder K Dhawan, Sanjay K Bhadada, Shanmugam Mayilraj

Abstract

Species of the genus Nesterenkonia have been isolated from different ecological niches, especially from saline habitats and reported as weak human pathogens causing asymptomatic bacteraemia. Here, for the first time we are reporting the genome sequence and pathogenomic analysis of a strain designated as CD08_7 isolated from the duodenal mucosa of a celiac disease patient, identified as Nesterenkonia jeotgali. To date, only five strains of the genus Nesterenkonia (N. massiliensis strain NP1T, Nesterenkonia sp. strain JCM 19054, Nesterenkonia sp. strain F and Nesterenkonia sp. strain AN1) have been whole genome sequenced and annotated. In the present study we have mapped and compared the virulence profile of N. jeotgali strain CD08_7 along with other reference genomes which showed some characteristic features that could contribute to pathogenicity. The RAST (Rapid Annotation using Subsystem Technology) based genome mining revealed more genes responsible for pathogenicity in strain CD08_7 when compared with the other four sequenced strains. The studied categories were resistance to antibiotic and toxic compounds, invasion and intracellular resistance, membrane transport, stress response, osmotic stress, oxidative stress, phages and prophages and iron acquisition. A total of 1431 protein-encoding genes were identified in the genome of strain CD08_7 among which 163 were predicted to contribute for pathogenicity. Out of 163 genes only 59 were common to other genome, which shows the higher levels of genetic richness in strain CD08_7 that may contribute to its functional versatility. This study provides a comprehensive analysis on genome of N. jeotgali strain CD08_7 and possibly indicates its importance as a clinical pathogen.

Keywords: Nesterenkonia jeotgali; RAST; celiac disease; comparative genomics; genome sequencing; gut; pathogenicity.

Figures

FIGURE 1
FIGURE 1
Neighbor-joining tree. Neighbor-joining tree based on 16S rDNA sequences, showing the phylogenetic relationship between Nesterenkonia species and other related members of the genus Nesterenkonia. Cellulomonas flavigena DSM 20109T (CP001964) was used as an outgroup Bootstrap values (expressed as percentage of 100 replications) greater than 70% are given at the nodes. Filled circles indicate that corresponding nodes were also recovered in the trees generated with maximum parsimony and maximum likelihood algorithms. Bar 0.01% sequence variation.
FIGURE 2
FIGURE 2
Genes involved in virulence, disease, and defense.
FIGURE 3
FIGURE 3
Comparison of genes present in the Nesterenkonia strains involved in conferring resistance against antibiotics and toxic compounds.
FIGURE 4
FIGURE 4
Comparison of gene homologs present in the Nesterenkonia strains involved in invasion and intra cellular resistance.
FIGURE 5
FIGURE 5
Genes involved in Membrane transport.
FIGURE 6
FIGURE 6
Genes involved in Stress response.
FIGURE 7
FIGURE 7
Comparison of genes present in the Nesterenkonia strains involved in Osmotic Stress.
FIGURE 8
FIGURE 8
Comparison of genes present in the Nesterenkonia strains involved in Oxidative Stress.
FIGURE 9
FIGURE 9
Genes involved in Phages, Prophages, Transposable elements, Plasmids.
FIGURE 10
FIGURE 10
Comparison of genes present in the Nesterenkonia strains involved in Phages, Prophages.
FIGURE 11
FIGURE 11
Genes involved in iron acquisition and metabolism.
FIGURE 12
FIGURE 12
Comparison of genes present in the Nesterenkonia strains involved in siderophores and iron acquisition and metabolism.

References

    1. Aidan-Parte C. (2014). LPSN—list of prokaryotic names with standing in nomenclature. Nucleic Acids Res. 42 D613–D616. 10.1093/nar/gkt1111
    1. Alix E., Mukherjee S., Roym C. R. (2011). Subversion of membrane transport pathways by vacuolar pathogens. J. Cell Biol. 12 943–952. 10.1083/jcb.201105019
    1. Avilés-Jiménez F., Guitron A., Segura-Lopez F., Mendez-Tenorio A., Iwai S., Hernandez-Guerrero A., et al. (2016). Microbiota studies in the bile duct strongly suggest a role for Helicobacter pylori in extrahepatic cholangiocarcinoma. Clin. Microbiol. Infect. 22 e11–e22. 10.1016/j.cmi.2015.10.008
    1. Aziz R. K., Bartels D., Best A. A., DeJongh M., Disz T., Edwards R. A., et al. (2008). The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75 10.1186/1471-2164-9-75
    1. Baron S. (1996). Medical Microbiology 4th Edn. Galveston, TX: University of Texas Medical Branch.
    1. Brettin T., Davis J. J., Disz T., Edwards R. A., Gerdes S., Olsen G. J., et al. (2015). RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 5:8365 10.1038/srep08365
    1. Bustos Fernandez L. M., Lasa J. S., Man F. (2014). Intestinal microbiota: its role in digestive diseases. J. Clin. Gastroenterol. 48 657–666. 10.1097/MCG.0000000000000153
    1. Cachat J., Deffert C., Hugues S., Krause K. H. (2015). Phagocyte NADPH oxidase and specific immunity. Clin. Sci. 128 635–648. 10.1042/CS20140635
    1. Canova C., Zabeo V., Pitter G., Romor P., Baldovin T., Zanotti R., et al. (2014). Association of maternal education, early infections, and antibiotic use with celiac disease: a population-based birth cohort study in north-eastern Italy. Am. J. Epidemiol. 180 76–85. 10.1093/aje/kwu101
    1. Chander A. M., Kaur G., Nair R. G., Dhawan D. K., Kochhar R., Mayilraj S., et al. (2016a). Genome sequencing of serinicoccus chungangensis strain CD08_5 isolated from duodenal mucosa of a celiac disease patient. Genome Announc. 4:e43-16 10.1128/genomeA.00043-16
    1. Chander A. M., Nair R. G., Kaur G., Kochhar R., Mayilraj S., Dhawan D. K., et al. (2016b). Genome sequence of Kocuria palustris Strain CD07_3 isolated from the duodenal mucosa of a celiac disease patient. Genome Announc. 4:e210-16 10.1128/genomeA.00210-16
    1. Cinova J., De- Palma G., Stepankova R., Kofronova O., Kverka M., Sanz Y., et al. (2011). Role of intestinal bacteria in gliadin-induced changes in intestinal mucosa: study in germ-free rats. PLoS ONE 6:e16169 10.1371/journal.pone.0016169
    1. Collins M. D., Lawson P. A., Labrenz M., Tindall B. J., Weiss N., Hirsch P. (2002). Nesterenkonia lacusekhoensis sp. nov., isolated from hypersaline Ekho Lake, East Antarctica, and emended description of the genus Nesterenkonia. Int. J. Syst. Evol. Microbiol. 52 1145–1150. 10.1099/00207713-52-4-1145
    1. Daniels I., Cavill D., Murray I. A., Long R. G. (2005). Elevated expression of iNOS mRNA and protein in coeliac disease. Clin. Chim. Acta 356 134–142. 10.1016/j.cccn.2005.01.029
    1. D’Argenio V., Casaburi G., Precone V., Pagliuca C., Colicchio R., Sarnataro D., et al. (2016). Metagenomics reveals dysbiosis and a potentially pathogenic N. flavescens Strain in Duodenum of Adult Celiac Patients. Am. J. Gastroenterol. 111 879–890. 10.1038/ajg.2016.95
    1. Delgado O., Quillaguaman J., Bakhtiar S., Mattiasson B., Gessesse A., Hatti-Kaul R. (2006). Nesterenkonia aethiopica sp. nov., an alkaliphilic, moderate halophile isolated from an Ethiopian soda lake. Int. J. Syst. Evol. Microbiol. 56 1229–1232. 10.1099/ijs.0.63633-0
    1. Edouard S., Sankar S., Dangui N. P., Lagier J. C., Michelle C., Raoult D., et al. (2014). Genome sequence and description of Nesterenkonia massiliensis sp. nov. strain NP1T. Stand. Genomic Sci. 9 866–882. 10.4056/sigs.5631022
    1. Govender L., Naidoo L., Setati M. E. (2013). Nesterenkonia suensis sp. nov., a haloalkaliphilic actinobacterium isolated from a salt pan. Int. J. Syst. Evol. Microbiol. 2013 41–46. 10.1099/ijs.0.035006-0
    1. Kaur G., Mual P., Kumar N., Verma A., Kumar A., Krishnamurthi S., et al. (2016). Microbacterium aureliae sp. nov., a novel actinobacterium member of the genus Microbacterium isolated from Aurelia aurita, the moon Jelly Fish. Int. J. Syst. Evol. Microbiol. 66 4665–4670. 10.1099/ijsem.0.001407
    1. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., et al. (2012). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62 716–721. 10.1099/ijs.0.038075-0
    1. Lagesen K., Hallin P., Rodland E. A., Staerfeldt H. H., Rognes T., Ussery D. W. (2007). RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35 3100–3108. 10.1093/nar/gkm160
    1. Laslett D., Canback B. (2004). ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 32 11–16. 10.1093/nar/gkh152
    1. Li W. J., Chen H. H., Kim C. J., Zhang Y. Q., Park D. J., Lee J. C., et al. (2005). Nesterenkonia sandarakina sp. nov. and Nesterenkonia lutea sp. nov., novel actinobacteria, and emended description of the genus Nesterenkonia. Int. J. Syst. Evol. Microbiol. 55 463–466. 10.1099/ijs.0.63281-0
    1. Li W. J., Chen H. H., Zhang Y. Q., Schumann P., Stackebrandt E., Xu L. H., et al. (2004). Nesterenkonia halotolerans sp. nov. and Nesterenkonia xinjiangensis sp. nov., actinobacteria from saline soils in the west of China. Int. J. Syst. Evol. Microbiol. 54 837–841. 10.1099/ijs.0.02935-0
    1. Li W. J., Zhang Y. Q., Schumann P., Liu H. Y., Yu L. Y., Zhang Y. Q., et al. (2008). Nesterenkonia halophila sp. nov., a moderately halophilic, alkalitolerant actinobacterium isolated from a saline soil. Int. J. Syst. Evol. Microbiol. 58 1359–1363. 10.1099/ijs.0.64226-0
    1. Lucht J. M., Bremer E. (1994). Adaptation of Escherichia coli to high osmolarity environments: osmoregulation of the high-affinity glycine betaine transport system proU. FEMS Microbiol. Rev. 14 3–20. 10.1111/j.1574-6976.1994.tb00067.x
    1. Luo H. Y., Miao L. H., Fang C., Yang P. L., Wang Y. R., Shi P. J., et al. (2008). Nesterenkonia flava sp. nov., isolated from paper-mill effluent. Int. J. Syst. Evol. Microbiol. 58 1927–1930. 10.1099/ijs.0.65618-0
    1. Luo H. Y., Wang Y. R., Miao L. H., Yang P. L., Shi P. J., Fang C. X., et al. (2009). Nesterenkonia alba sp. nov., an alkaliphilic actinobacterium isolated from the black liquor treatment system of a cotton pulp mill. Int. J. Syst. Evol. Microbiol. 59 863–868. 10.1099/ijs.0.003376-0
    1. Mayilraj S., Saha P., Suresh K., Saini H. S. (2006). Ornithinimicrobium kibberense sp. nov., isolated from the Indian Himalayas. Int. J. Syst. Evol. Microbiol. 56 1657–1661. 10.1099/ijs.0.64138-0
    1. Murray I. A., Daniels I., Coupland K., Smith J. A., Long R. G. (2002). Increased activity and expression of iNOS in human duodenal enterocytes from patients with celiac disease. Am. J. Physiol. Gastrointest. Liver Physiol. 283 G319–G326. 10.1152/ajpgi.00324.2001
    1. Nadal I., Donat E., Ribes-Koninckx C., Calabuig M., Sanz Y. (2007). Imbalance in the composition of the duodenal microbiota of children with coeliac disease. J. Med. Microbiol. 56 1669–1674. 10.1099/jmm.0.47410-0
    1. Nair G., Gurwinder K., Indu K., Nitin K. S., Sudeep K. M., Srikrishna S., et al. (2016). Genome mining and comparative genomic analysis of five coagulase-negative staphylococci (CNS) isolated from human colon and gall bladder. J. Data Mining Genomics Proteomics. 7:192.
    1. Oberhuber G., Granditsch G., Vogelsang H. (1999). The histopathology of coeliac disease: time for a standardized report scheme for pathologists. Eur. J. Gastroenterol. Hepatol. 11 1185–1194. 10.1097/00042737-199910000-00019
    1. Overbeek R., Olson R., Pusch G. D., Olsen G. J., Davis J. J., Disz T., et al. (2014). The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res. 42 D206–D214. 10.1093/nar/gkt1226
    1. Paiva C. N., Bozza M. T. (2014). Are reactive oxygen species always detrimental to pathogens? Antioxidants & Redox signaling. Antioxid. Redox Signal. 20 1000–1037. 10.1089/ars.2013.5447
    1. Pozo-Rubio T., de Palma G., Mujico J. R., Olivares M., Marcos A., Acuna M. D., et al. (2013). Influence of early environmental factors on lymphocyte subsets and gut microbiota in infants at risk of celiac disease; the proficel study. Nutr. Hosp. 28 464–473. 10.3305/nh.2013.28.2.6310
    1. Pozo-Rubio T., Olivares M., Nova E., De- Palma G., Mujico J. R., Ferrer M. D., et al. (2012). Immune development and intestinal microbiota in celiac disease. Clin. Dev. Immunol. 2012:654143 10.155/2012/654143
    1. Rothe M., Alpert C., Engst W., Musiol S., Loh G., Blaut M. (2012). Impact of nutritional factors on the proteome of intestinal Escherichia coli: induction of OxyR-dependent proteins AhpF and Dps by a lactose-rich diet. Appl. Environ. Microbiol. 78 3580–3591. 10.1128/AEM.00244-12
    1. Rukhsana C., Gautam K. S., Jyotirmoy D. (1996). Stress response in pathogenic bacteria. J. Biosci. 21 149–160. 10.1007/BF02703105
    1. Sanchez E., Donat E., Ribes-Koninckx C., Fernandez-Murga M. L., Sanz Y. (2013). Duodenal-mucosal bacteria associated with celiac disease in children. Appl. Environ. Microbiol. 79 5472–5479. 10.1128/AEM.00869-13
    1. Shmidt E., Smyrk T. C., Boswell C. L., Enders F. T., Oxentenko A. S. (2014). Increasing duodenal intraepithelial lymphocytosis found at upper endoscopy: time trends and associations. Gastrointest. Endosc. 80 105–111. 10.1016/j.gie.2014.01.008
    1. Siguier P., Perochon J., Lestrade L., Mahillon J., Chandler M. (2006). ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 34 D32–D36. 10.1093/nar/gkj014
    1. Sleator R. D., Hill C. (2002). Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol. Rev. 26 49–71. 10.1111/j.1574-6976.2002.tb00598.x
    1. Stackebrandt E., Koch C., Gvozdiak O., Schumann P. (1995). Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. Int. J. Syst. Bacteriol. 45 682–692. 10.1099/00207713-45-4-682
    1. Stoiber W., Obermayer A., Steinbacher P., Krautgartner W. D. (2015). The role of reactive oxygen species (ROS) in the formation of extracellular traps (ETs) in humans. Biomolecules 5 702–723. 10.3390/biom5020702
    1. Sugino A., Craig L. P., Kenneth N. K., Nicholas R. C. (1977). Mechanism of action of nalidixic acid: purification of Escherichia coli nalA gene product and its relationship to DNA gyrase and a novel nicking-closing enzyme. Proc. Natl. Acad. Sci. U.S.A. 74 4767–4771. 10.1073/pnas.74.11.4767
    1. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30 2725–2729. 10.1093/molbev/mst197
    1. Uhde M., Ajamian M., Caio G., De Giorgio R., Indart A., Green P. H., et al. (2014). Intestinal cell damage and systemic immune activation in individuals reporting sensitivity to wheat in the absence of coeliac disease. Gut 65 1930–1937. 10.1136/gutjnl-2016-311964
    1. Wacklin P., Laurikka P., Lindfors K., Collin P., Salmi T., Lahdeaho M. L., et al. (2014). Altered duodenal microbiota composition in celiac disease patients suffering from persistent symptoms on a long-term gluten-free diet. Am. J. Gastroenterol. 109 1933–1941. 10.1038/ajg.2014.355
    1. Yoon J., Jung S., Kim W., Nam S., Oh T. (2006). Nesterenkonia jeotgali sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int. J. Syst. Evol. Microbiol. 56 2587–2592. 10.1099/ijs.0.64266-0

Source: PubMed

3
Subscribe