Inflammation and CFTR: might neutrophils be the key in cystic fibrosis?

V Witko-Sarsat, I Sermet-Gaudelus, G Lenoir, B Descamps-Latscha, V Witko-Sarsat, I Sermet-Gaudelus, G Lenoir, B Descamps-Latscha

Abstract

The aim of this hypothesis is to provide new insights into the still unclear mechanisms governing airway inflammation in cystic fibrosis. Although the genetic basis of cystic fibrosis as well as the molecular structure of cystic fibrosis transmembrane regulator (CFTR), the mutated protein which causes the disease, have been well defined, a clear relationship between the genetic defect and the pulmonary pathophysiology, especially chronic infections and neutrophil-dominated airway inflammation has not been established. Cystic fibrosis is thus a unique pathological situation in that neutrophils can be depicted as both an antiinfectious and a proinflammatory cell. In cystic fibrosis there is an emerging picture of an imbalance between these two roles with both a reduction in the antiinfectious efficacy and an augmentation of the proinflammatory functions. Better knowledge of fundamental defects in neutrophil function in cystic fibrosis as well as a novel cellular function of CFTR, which will be reviewed, will allow identification of potentially new clinical targets and aid selective therapeutic action aimed at counteracting the lethal neutrophil-induced airway inflammation. The rationale for colchicine therapy is a significant example of a drug which might act both at the molecular levels on CFTR expression in epithelial cells and on neutrophils to mediate antiinflammatory effects. Preliminary results are presented in this issue (Med Inflamm 1999; 8: 13-15).

References

    1. Nature. 1988 Jun 23;333(6175):711
    1. J Lab Clin Med. 1988 May;111(5):511-8
    1. N Engl J Med. 1990 Apr 26;322(17):1189-94
    1. Blood. 1990 Dec 1;76(11):2169-81
    1. Lancet. 1991 Feb 16;337(8738):392-4
    1. Nature. 1991 Jul 4;352(6330):70-3
    1. Nucleic Acids Res. 1991 Oct 11;19(19):5417-23
    1. J Clin Invest. 1992 Oct;90(4):1296-301
    1. Lancet. 1993 Apr 24;341(8852):1070-4
    1. Cell. 1993 Jul 2;73(7):1251-4
    1. Am J Respir Crit Care Med. 1994 Jul;150(1):207-13
    1. J Biol Chem. 1994 Aug 12;269(32):20575-83
    1. Science. 1994 Oct 7;266(5182):107-9
    1. Am J Respir Crit Care Med. 1994 Dec;150(6 Pt 2):S109-13
    1. Am J Physiol. 1994 Dec;267(6 Pt 1):C1623-32
    1. N Engl J Med. 1995 Mar 30;332(13):848-54
    1. Am J Respir Crit Care Med. 1995 Apr;151(4):1075-82
    1. Am J Respir Crit Care Med. 1995 Apr;151(4):939-41
    1. Pediatr Pulmonol. 1995 Jan;19(1):1-9
    1. Am J Respir Crit Care Med. 1995 Dec;152(6 Pt 1):1910-6
    1. Am J Respir Crit Care Med. 1995 Dec;152(6 Pt 1):2111-8
    1. J Immunol. 1996 Sep 15;157(6):2728-35
    1. N Engl J Med. 1997 Feb 13;336(7):487-91
    1. Cell. 1997 Feb 21;88(4):553-60
    1. Am J Physiol. 1997 May;272(5 Pt 1):C1642-53
    1. Lancet. 1997 Sep 6;350(9079):711-2
    1. Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):12088-93
    1. Am J Respir Crit Care Med. 1998 Mar;157(3 Pt 1):756-61
    1. Nat Med. 1998 Jun;4(6):663-4
    1. Am J Physiol. 1998 Jul;275(1 Pt 1):C323-6
    1. J Clin Invest. 1998 Sep 15;102(6):1200-7
    1. J Infect Dis. 1999 Jan;179(1):151-62
    1. Mediators Inflamm. 1999;8(1):13-5
    1. J Infect Dis. 1980 Feb;141(2):238-47
    1. J Infect Dis. 1984 Apr;149(4):523-31
    1. J Biol Chem. 1986 Jan 15;261(2):512-4
    1. Am Rev Respir Dis. 1986 Jul;134(1):49-56
    1. J Infect. 1986 Jul;13(1):55-72
    1. Thorax. 1987 Feb;42(2):120-5
    1. Science. 1989 Sep 8;245(4922):1066-73

Source: PubMed

3
Subscribe