Additional Effects of Nutritional Antioxidant Supplementation on Peripheral Muscle during Pulmonary Rehabilitation in COPD Patients: A Randomized Controlled Trial

Fares Gouzi, Jonathan Maury, Nelly Héraud, Nicolas Molinari, Héléna Bertet, Bronia Ayoub, Marine Blaquière, François Bughin, Philippe De Rigal, Magali Poulain, Joël Pincemail, Jean-Paul Cristol, Dalila Laoudj-Chenivesse, Jacques Mercier, Christian Préfaut, Pascal Pomiès, Maurice Hayot, Fares Gouzi, Jonathan Maury, Nelly Héraud, Nicolas Molinari, Héléna Bertet, Bronia Ayoub, Marine Blaquière, François Bughin, Philippe De Rigal, Magali Poulain, Joël Pincemail, Jean-Paul Cristol, Dalila Laoudj-Chenivesse, Jacques Mercier, Christian Préfaut, Pascal Pomiès, Maurice Hayot

Abstract

Background: Skeletal muscle dysfunction in patients with chronic obstructive pulmonary disease (COPD) is not fully reversed by exercise training. Antioxidants are critical for muscle homeostasis and adaptation to training. However, COPD patients experience antioxidant deficits that worsen after training and might impact their muscle response to training. Nutritional antioxidant supplementation in combination with pulmonary rehabilitation (PR) would further improve muscle function, oxidative stress, and PR outcomes in COPD patients.

Methods: Sixty-four COPD patients admitted to inpatient PR were randomized to receive 28 days of oral antioxidant supplementation targeting the previously observed deficits (PR antioxidant group; α-tocopherol: 30 mg/day, ascorbate: 180 mg/day, zinc gluconate: 15 mg/day, selenomethionine: 50 μg/day) or placebo (PR placebo group). PR consisted of 24 sessions of moderate-intensity exercise training. Changes in muscle endurance (primary outcome), oxidative stress, and PR outcomes were assessed.

Results: Eighty-one percent of the patients (FEV1 = 58.9 ± 20.0%pred) showed at least one nutritional antioxidant deficit. Training improved muscle endurance in the PR placebo group (+37.4 ± 45.1%, p < 0.001), without additional increase in the PR antioxidant group (-6.6 ± 11.3%; p = 0.56). Nevertheless, supplementation increased the α-tocopherol/γ-tocopherol ratio and selenium (+58 ± 20%, p < 0.001, and +16 ± 5%, p < 0.01, respectively), muscle strength (+11 ± 3%, p < 0.001), and serum total proteins (+7 ± 2%, p < 0.001), and it tended to increase the type I fiber proportion (+32 ± 17%, p = 0.07). The prevalence of muscle weakness decreased in the PR antioxidant group only, from 30.0 to 10.7% (p < 0.05).

Conclusions: While the primary outcome was not significantly improved, COPD patients demonstrate significant improvements of secondary outcomes (muscle strength and other training-refractory outcomes), suggesting a potential "add-on" effect of the nutritional antioxidant supplementation (vitamins C and E, zinc, and selenium) during PR. This trial is registered with NCT01942889.

Figures

Figure 1
Figure 1
CONSORT diagram of the COPD patient recruitment.
Figure 2
Figure 2
Box-and-whisker plots for relative change (%) in functional parameters: (a) quadriceps maximal voluntary contraction (QMVC) and (b) quadriceps type I oxidative fiber proportion. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001. #Group effect adjusted on the corticosteroid treatment. ##Group effect adjusted on the baseline value and interaction term.
Figure 3
Figure 3
Linear regression analysis. The change (in %) in quadriceps maximal voluntary contraction (QMVC) was independently correlated with the change in the α-tocopherol/γ-tocopherol ratio (r = 0.39, p < 0.05) in all COPD patients (a), and the change (in %) in quadriceps maximal voluntary contraction (QMVC) was independently correlated with the change in selenium (r = −0.64, p < 0.001) in all COPD patients (b).

References

    1. Vogelmeier C. F., Criner G. J., Martinez F. J., et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. GOLD executive summary. American Journal of Respiratory and Critical Care Medicine. 2017;195(5):557–582. doi: 10.1164/rccm.201701-0218PP.
    1. Maltais F., Decramer M., Casaburi R., et al. An official American Thoracic Society/European Respiratory Society statement: update on limb muscle dysfunction in chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine. 2014;189(9):e15–e62. doi: 10.1164/rccm.201402-0373ST.
    1. Spruit M. A., Singh S. J., Garvey C., et al. An official American Thoracic Society/European Respiratory Society statement: key concepts and advances in pulmonary rehabilitation. American Journal of Respiratory and Critical Care Medicine. 2013;188(8):e13–e64. doi: 10.1164/rccm.201309-1634ST.
    1. Gouzi F., Prefaut C., Abdellaoui A., et al. Blunted muscle angiogenic training-response in COPD patients versus sedentary controls. The European Respiratory Journal. 2013;41(4):806–814. doi: 10.1183/09031936.00053512.
    1. De Brandt J., Spruit M. A., Derave W., Hansen D., Vanfleteren L. E., Burtin C. Changes in structural and metabolic muscle characteristics following exercise-based interventions in patients with COPD: a systematic review. Expert Review of Respiratory Medicine. 2016;10(5):521–545. doi: 10.1586/17476348.2016.1157472.
    1. Pomies P., Blaquiere M., Maury J., Mercier J., Gouzi F., Hayot M. Involvement of the FoxO1/MuRF1/atrogin-1 signaling pathway in the oxidative stress-induced atrophy of cultured chronic obstructive pulmonary disease myotubes. PLoS One. 2016;11(8, article e0160092) doi: 10.1371/journal.pone.0160092.
    1. Couillard A., Prefaut C. From muscle disuse to myopathy in COPD: potential contribution of oxidative stress. The European Respiratory Journal. 2005;26(4):703–719. doi: 10.1183/09031936.05.00139904.
    1. Koechlin C., Couillard A., Simar D., et al. Does oxidative stress alter quadriceps endurance in chronic obstructive pulmonary disease? American Journal of Respiratory and Critical Care Medicine. 2004;169(9):1022–1027. doi: 10.1164/rccm.200310-1465OC.
    1. Blaser H., Dostert C., Mak T. W., Brenner D. TNF and ROS crosstalk in inflammation. Trends in Cell Biology. 2016;26(4):249–261. doi: 10.1016/j.tcb.2015.12.002.
    1. Kozakowska M., Pietraszek-Gremplewicz K., Jozkowicz A., Dulak J. The role of oxidative stress in skeletal muscle injury and regeneration: focus on antioxidant enzymes. Journal of Muscle Research and Cell Motility. 2015;36(6):377–393. doi: 10.1007/s10974-015-9438-9.
    1. Azzi A. Many tocopherols, one vitamin E. Molecular Aspects of Medicine. 2018;61:92–103. doi: 10.1016/j.mam.2017.06.004.
    1. Huang Z., Rose A. H., Hoffmann P. R. The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities. Antioxidants & Redox Signaling. 2012;16(7):705–743. doi: 10.1089/ars.2011.4145.
    1. van Dijk M., Dijk F. J., Hartog A., et al. Reduced dietary intake of micronutrients with antioxidant properties negatively impacts muscle health in aged mice. Journal of Cachexia, Sarcopenia and Muscle. 2018;9(1):146–159. doi: 10.1002/jcsm.12237.
    1. van Dronkelaar C., van Velzen A., Abdelrazek M., van der Steen A., Weijs P. J. M., Tieland M. Minerals and sarcopenia; the role of calcium, iron, magnesium, phosphorus, potassium, selenium, sodium, and zinc on muscle mass, muscle strength, and physical performance in older adults: a systematic review. Journal of the American Medical Directors Association. 2018;19(1):6–11.e3. doi: 10.1016/j.jamda.2017.05.026.
    1. Mocchegiani E., Costarelli L., Giacconi R., et al. Vitamin E-gene interactions in aging and inflammatory age-related diseases: implications for treatment. A systematic review. Ageing Research Reviews. 2014;14:81–101. doi: 10.1016/j.arr.2014.01.001.
    1. Mocchegiani E., Costarelli L., Giacconi R., et al. Micronutrient–gene interactions related to inflammatory/immune response and antioxidant activity in ageing and inflammation. A systematic review. Mechanisms of Ageing and Development. 2014;136-137:29–49. doi: 10.1016/j.mad.2013.12.007.
    1. Saboori S., Shab-Bidar S., Speakman J. R., Yousefi Rad E., Djafarian K. Effect of vitamin E supplementation on serum C-reactive protein level: a meta-analysis of randomized controlled trials. European Journal of Clinical Nutrition. 2015;69(8):867–873. doi: 10.1038/ejcn.2014.296.
    1. Pingitore A., Lima G. P. P., Mastorci F., Quinones A., Iervasi G., Vassalle C. Exercise and oxidative stress: potential effects of antioxidant dietary strategies in sports. Nutrition. 2015;31(7-8):916–922. doi: 10.1016/j.nut.2015.02.005.
    1. Paschalis V., Theodorou A. A., Kyparos A., et al. Low vitamin C values are linked with decreased physical performance and increased oxidative stress: reversal by vitamin C supplementation. European Journal of Nutrition. 2016;55(1):45–53. doi: 10.1007/s00394-014-0821-x.
    1. Maury J., Gouzi F., De Rigal P., et al. Heterogeneity of systemic oxidative stress profiles in COPD: a potential role of gender. Oxidative Medicine and Cellular Longevity. 2015;2015:11. doi: 10.1155/2015/201843.201843
    1. Laviolette L., Lands L. C., Dauletbaev N., et al. Combined effect of dietary supplementation with pressurized whey and exercise training in chronic obstructive pulmonary disease: a randomized, controlled, double-blind pilot study. Journal of Medicinal Food. 2010;13(3):589–598. doi: 10.1089/jmf.2009.0142.
    1. Biró G., Hulshof K. F. A. M., Ovesen L., Cruz J. A. A., for the EFCOSUM Group Selection of methodology to assess food intake. European Journal of Clinical Nutrition. 2002;56(S2):S25–S32. doi: 10.1038/sj.ejcn.1601426.
    1. Seymour J. M., Spruit M. A., Hopkinson N. S., et al. The prevalence of quadriceps weakness in COPD and the relationship with disease severity. The European Respiratory Journal. 2010;36(1):81–88. doi: 10.1183/09031936.00104909.
    1. Fontaine J., Neve J., Peretz A., Capel P., Famaey J. P. Effects of acute and chronic prednisolone treatment on serum zinc levels in rats with adjuvant arthritis. Agents and Actions. 1991;33(3-4):247–253. doi: 10.1007/BF01986570.
    1. Minetto M. A., Botter A., Lanfranco F., Baldi M., Ghigo E., Arvat E. Muscle fiber conduction slowing and decreased levels of circulating muscle proteins after short-term dexamethasone administration in healthy subjects. The Journal of Clinical Endocrinology & Metabolism. 2010;95(4):1663–1671. doi: 10.1210/jc.2009-2161.
    1. Passerieux E., Hayot M., Jaussent A., et al. Effects of vitamin C, vitamin E, zinc gluconate, and selenomethionine supplementation on muscle function and oxidative stress biomarkers in patients with facioscapulohumeral dystrophy: a double-blind randomized controlled clinical trial. Free Radical Biology & Medicine. 2015;81:158–169. doi: 10.1016/j.freeradbiomed.2014.09.014.
    1. Puente-Maestu L., Palange P., Casaburi R., et al. Use of exercise testing in the evaluation of interventional efficacy: an official ERS statement. The European Respiratory Journal. 2016;47(2):429–460. doi: 10.1183/13993003.00745-2015.
    1. Shrikrishna D., Tanner R. J., Lee J. Y., et al. A randomized controlled trial of angiotensin-converting enzyme inhibition for skeletal muscle dysfunction in COPD. Chest. 2014;146(4):932–940. doi: 10.1378/chest.13-2483.
    1. Camillo C. A., Osadnik C. R., van Remoortel H., Burtin C., Janssens W., Troosters T. Effect of “add-on” interventions on exercise training in individuals with COPD: a systematic review. ERJ Open Research. 2016;2(1) doi: 10.1183/23120541.00078-2015.
    1. Liao W. H., Chen J. W., Chen X., et al. Impact of resistance training in subjects with COPD: a systematic review and meta-analysis. Respiratory Care. 2015;60(8):1130–1145. doi: 10.4187/respcare.03598.
    1. Pan L., Guo Y., Liu X., Yan J. Lack of efficacy of neuromuscular electrical stimulation of the lower limbs in chronic obstructive pulmonary disease patients: a meta-analysis. Respirology. 2014;19(1):22–29. doi: 10.1111/resp.12200.
    1. Margaritelis N. V., Paschalis V., Theodorou A. A., Kyparos A., Nikolaidis M. G. Antioxidants in personalized nutrition and exercise. Advances in Nutrition. 2018;9(6):813–823. doi: 10.1093/advances/nmy052.
    1. van de Bool C., Rutten E. P. A., van Helvoort A., Franssen F. M. E., Wouters E. F. M., Schols A. M. W. J. A randomized clinical trial investigating the efficacy of targeted nutrition as adjunct to exercise training in COPD. Journal of Cachexia, Sarcopenia and Muscle. 2017;8(5):748–758. doi: 10.1002/jcsm.12219.
    1. Hofford J. M., Milakofsky L., Vogel W. H., Sacher R. S., Savage G. J., Pell S. The nutritional status in advanced emphysema associated with chronic bronchitis: a study of amino acid and catecholamine levels. American Review of Respiratory Disease. 1990;141, 4, Part 1:902–908. doi: 10.1164/ajrccm/141.4_Pt_1.902.
    1. Bolton C. E., Ionescu A. A., Shiels K. M., et al. Associated loss of fat-free mass and bone mineral density in chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine. 2004;170(12):1286–1293. doi: 10.1164/rccm.200406-754OC.
    1. Zingg J. M. Vitamin E: a role in signal transduction. Annual Review of Nutrition. 2015;35(1):135–173. doi: 10.1146/annurev-nutr-071714-034347.
    1. Rederstorff M., Krol A., Lescure A. Understanding the importance of selenium and selenoproteins in muscle function. Cellular and Molecular Life Sciences. 2006;63(1):52–59. doi: 10.1007/s00018-005-5313-y.
    1. Hill K. E., Motley A. K., Li X., May J. M., Burk R. F. Combined selenium and vitamin E deficiency causes fatal myopathy in guinea pigs. The Journal of Nutrition. 2001;131(6):1798–1802. doi: 10.1093/jn/131.6.1798.
    1. Ishihara H., Kanda F., Matsushita T., Chihara K., Itoh K. White muscle disease in humans: myopathy caused by selenium deficiency in anorexia nervosa under long term total parenteral nutrition. Journal of Neurology, Neurosurgery & Psychiatry. 1999;67(6):829–830. doi: 10.1136/jnnp.67.6.829.
    1. Rannem T., Ladefoged K., Hylander E., et al. The effect of selenium supplementation on skeletal and cardiac muscle in selenium-depleted patients. Journal of Parenteral and Enteral Nutrition. 1995;19(5):351–355. doi: 10.1177/0148607195019005351.
    1. Zamora A. J., Tessier F., Marconnet P., Margaritis I., Marini J. F. Mitochondria changes in human muscle after prolonged exercise, endurance training and selenium supplementation. European Journal of Applied Physiology and Occupational Physiology. 1995;71(6):505–511. doi: 10.1007/BF00238552.

Source: PubMed

3
Subscribe