Does malaria affect placental development? Evidence from in vitro models

Alexandra J Umbers, Danielle I Stanisic, Maria Ome, Regina Wangnapi, Sarah Hanieh, Holger W Unger, Leanne J Robinson, Elvin Lufele, Francesca Baiwog, Peter M Siba, Christopher L King, James G Beeson, Ivo Mueller, John D Aplin, Jocelyn D Glazier, Stephen J Rogerson, Alexandra J Umbers, Danielle I Stanisic, Maria Ome, Regina Wangnapi, Sarah Hanieh, Holger W Unger, Leanne J Robinson, Elvin Lufele, Francesca Baiwog, Peter M Siba, Christopher L King, James G Beeson, Ivo Mueller, John D Aplin, Jocelyn D Glazier, Stephen J Rogerson

Abstract

Background: Malaria in early pregnancy is difficult to study but has recently been associated with fetal growth restriction (FGR). The pathogenic mechanisms underlying malarial FGR are poorly characterized, but may include impaired placental development. We used in vitro methods that model migration and invasion of placental trophoblast into the uterine wall to investigate whether soluble factors released into maternal blood in malaria infection might impair placental development. Because trophoblast invasion is enhanced by a number of hormones and chemokines, and is inhibited by pro-inflammatory cytokines, many of which are dysregulated in malaria in pregnancy, we further compared concentrations of these factors in blood between malaria-infected and uninfected pregnancies.

Methodology/principal findings: We measured trophoblast invasion, migration and viability in response to treatment with serum or plasma from two independent cohorts of Papua New Guinean women infected with Plasmodium falciparum or Plasmodium vivax in early pregnancy. Compared to uninfected women, serum and plasma from women with P. falciparum reduced trophoblast invasion (P = .06) and migration (P = .004). P. vivax infection did not alter trophoblast migration (P = .64). The P. falciparum-specific negative effect on placental development was independent of trophoblast viability, but associated with high-density infections. Serum from P. falciparum infected women tended to have lower levels of trophoblast invasion promoting hormones and factors and higher levels of invasion-inhibitory inflammatory factors.

Conclusion/significance: We demonstrate that in vitro models of placental development can be adapted to indirectly study the impact of malaria in early pregnancy. These infections could result in impaired trophoblast invasion with reduced transformation of maternal spiral arteries due to maternal hormonal and inflammatory disturbances, which may contribute to FGR by limiting the delivery of maternal blood to the placenta. Future prevention strategies for malaria in pregnancy should include protection in the first half of pregnancy.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. The effect of pooled serum…
Figure 1. The effect of pooled serum from uninfected and P. falciparum infected women at enrolment on HTR8/SVneo invasion index over 48 h.
Invasion index indicates the proportion of cells invaded through the Matrigel™, normalized to baseline invasion of trophoblast cells treated with complete media (untreated group). Serum from infected women inhibited median (IQR) invasion by 65% (Mann Whitney-U test P = .1) compared to serum from uninfected women, and by 37% compared with complete media treatment (P = .06). The malaria-specific reduction in invasion was comparable to that of 10 ng/ml TGFβ (positive control for invasion inhibition), which inhibited invasion by 31% (Mann Whitney U-test, P = .06). Normal uninfected pregnancy serum enhanced trophoblast invasion by 80% (P = .06) compared with complete media alone. Both viability and invasion assays were repeated three times in triplicate. Data shown are expressed as median and (IQR) of the mean of each of three independent experiments, repeated in triplicate.
Figure 2. Migration of Swan cells was…
Figure 2. Migration of Swan cells was determined over time using Wimasis software.
Swan 71 trophoblast cells were plated, and scratched 12 h later. At the time of treatment (0 h) with either 10% FBS, serum free media (SFM, not shown), or LPS 500 ng/ml in SFM, or with 10% plasma in SFM (not shown); three independent images were taken at 10x magnification. The same frames were imaged subsequently at 6 and 24 h following treatment. Images were up-loaded to www.ibidi.com, and the percent cell coverage (green) compared to the scratched area (black) was determined in each frame using WIMASIS analysis software. The percent increase in migration over time (Figure 3 A and B) was determined by subtracting cell coverage at 0 h from subsequent time points.
Figure 3. Plasma collected from Plasmodium falciparum…
Figure 3. Plasma collected from Plasmodium falciparum infected women in early pregnancy inhibits Swan cell migration at 6 h (A) and 24 h (B).
Median (IQR) percent increase in migration (relative to 0 h) of Swan 71 cells was measured over 24 h in response to control treatments (10% fetal bovine serum [FBS] in serum free medium, untreated [SFM], and 500 ng/ml LPS in SFM, open bars) or with 10% plasma from individuals (black bars) that were malaria-uninfected (n = 13), P. vivax-infected (n = 9) or P. falciparum-infected (n = 13), over 4 independent experiments. (A) At 6 h, plasma collected from women with P. falciparum infection inhibited migration compared with plasma from uninfected women (*P = .01). Treatment with LPS significantly inhibited migration (*P = .03) compared with 10% FBS treatment. There was no difference between uninfected and P. vivax plasma treatments (P = .35). (B) At 24 h, compared with cells treated with uninfected plasma, plasma collected from women with P. falciparum infection significantly reduced migration (**P = .004), while migration with plasma from P. vivax infection was unchanged (P = .64). LPS significantly inhibited migration compared to cells treated with 10% FBS (*P = .03).
Figure 4. Plasmodium falciparum infection status does…
Figure 4. Plasmodium falciparum infection status does not affect trophoblast viability.
(A) Mean and SD fold change in HTR8/SVneo viability relative to that of cells treated with complete media (open bars) was measured by percent reduction in AB dye after 4 h, following incubation with serum treatments (black bars) for 48 h. Compared with complete medium, complete medium supplemented with 10% volume pooled serum from women with or without infection had no effect on trophoblast viability (ANOVA P = .4). Treatment with SRM (open bar, positive control for a negative effect on trophoblast viability) reduced cell viability compared to trophoblasts treated with complete media (Mann Whitney test P = .06). Figure 4A indicates the mean and SD of each of three independent experiments, repeated in triplicate. (B) Median (IQR) fold change in viability of Swan 71 following treatment with plasma from individual women in early pregnancy. Swan 71 cells were treated once in triplicate for 24 h with either complete media (open bar), or serum free media supplemented with 10% plasma from women with (n = 13) and without (n = 11) P. falciparum infection in early pregnancy (black bars). Following treatment, Swan 71 cells were incubated with AB and cell metabolism (as a proxy for viability) was normalized to that of cells treated with complete media. There was no difference in viability between plasma treatments with infection (P = .4), but cells cultured in complete media had relatively higher measure of viability than those treated with 10% plasma (*P = .01 in both cases).
Figure 5. Parasite density negatively influences Swan…
Figure 5. Parasite density negatively influences Swan 71 cell migration.
Parasite densities from all P. falciparum and P.vivax infected participants (n = 22) were log transformed, and correlated with respective Swan 71 migration data at 24 h post-treatment. There was a significant negative association between density of infection in early pregnancy with migration (P = .02). No other clinical parameters were found to correlate with Swan 71 cell migration in response to plasma treatment.

References

    1. Desai M, ter Kuile FO, Nosten F, McGready R, Asamoa K, et al. (2007) Epidemiology and burden of malaria in pregnancy. Lancet Infect Dis 7: 93–104.
    1. Guyatt HL, Snow RW (2004) Impact of malaria during pregnancy on low birth weight in sub-Saharan Africa. Clin Microbiol Rev 17: 760–769.
    1. Brabin BJ, Johnson PM (2005) Placental malaria and pre-eclampsia through the looking glass backwards? J Reprod Immunol 65: 1–15.
    1. Pijnenborg R, Roberstone WB, Brossens I, Dixone G (1981) Trophoblast invasion and the establishment of haemochorial placentation in man and laboratory animals. Placenta 2: 71–92.
    1. Whitley GS, Cartwright JE (2009) Trophoblast-mediated spiral artery remodelling: a role for apoptosis. J Anat 215: 21–26.
    1. Huppertz B, Berghold VM, Kawaguchi R, Gauster M (2012) A variety of opportunities for immune interactions during trophpblast development and invasion. Am J Repro Immuno 67: 349–357.
    1. Kaufmann P, Black S, Huppertz B (2003) Endovascular trophoblast invasion: implications for the pathogenesis of intrauterine growth retardation and preeclampsia. Biol Reprod 69: 1–7.
    1. Robson A, Harris LK, Innes BA, Lash GE, Aljunaidy MM, et al... (2012) Uterine natural killer cells initiate spiral artery remodeling in human pregnancy. FASEB J.
    1. Smith SD, Dunk CE, Aplin JD, Harris LK, Jones RL (2009) Evidence for immune cell involvement in decidual spiral arteriole remodeling in early human pregnancy. Am J Pathol 174: 1959–1971.
    1. Harris LK, Aplin JD (2007) Vascular remodeling and extracellular matrix breakdown in the uterine spiral arteries during pregnancy. Reproductive Sciences 14: 28–34.
    1. Knofler M (2010) Critical growth factors and signalling pathways controlling human trophoblast invasion. Int J Dev Biol 54: 269–280.
    1. Cottrell G, Mary JY, Barro D, Cot M (2007) The importance of the period of malarial infection during pregnancy on birth weight in tropical Africa. Am J Trop Med Hyg 76: 849–854.
    1. Kalilani L, Mofolo I, Chaponda M, Rogerson SJ, Meshnick SR (2010) The effect of timing and frequency of Plasmodium falciparum infection during pregnancy on the risk of low birth weight and materal anemia. Trans R Soc Trop Med Hyg 104: 416–422.
    1. Rijken MJ, Papageorghiou AT, Thiptharakun S, Kiricharoen S, Dwell SL, et al. (2012) Ultrasound evidence of early fetal growth restriction after maternal malaria infection. PLoS One 7: e31411.
    1. Griffin J, Laokomba V, Thorp JJ, Herring A, Tshefu A, et al. (2012) Plasmodium falciparum parasitemia in the first half of pregnancy, uterine and umbilical artery blood flow, and foetal growth: a longitudinal Doppler ultrasound study. Malaria Journal 11: 319.
    1. Landis SH, Lokomba V, Ananth CV, Atibu J, Ryder RW, et al. (2009) Impact of maternal malaria and under-nutrition on intrauterine growth restriction: a prospective ultrasound study in Democratic Republic of Congo. Epidemiol Infect 137: 294–304.
    1. Huynh BT, Fievet N, Gbaguidi G, Dechavanne S, Borgella S, et al. (2011) Influence of the timing of malaria infection during pregnancy on birth weight and on maternal anemia in Benin. Am J Trop Med Hyg 85: 214–220.
    1. Dorman EK, Shulman CE, Kingdom J, Bulmer JN, Mwendwa J, et al. (2002) Impaired uteroplacental blood flow in pregnancies complicated by falciparum malaria. Ultrasound Obstet Gynecol 19: 165–170.
    1. Umbers AJ, Aitken EA, Rogerson SJ (2011) Malaria in Pregnancy: small babies, big problem. Trends in Parasitology 27: 168–175.
    1. Carvalho BO, Lopes SC, Nogueira PA, Orlandi PP, Bargieri DY, et al. (2010) On the cytoadhesion of Plasmodium vivax-infected erythrocytes. J Infect Dis 202: 638–647.
    1. Chotivanich K, Udomsangpetch R, Suwanarusk R, Pukrittayakamee S, Wilairatana P, et al. (2012) Plasmodium vivax adherence to placental glycosaminoglycans. PLoS One 7: e24509.
    1. Mayor A, Bardaji A, Felger A, King CL, et al... (2012) Placental infection with Plasmodium vivax: a histopathological and molecular study. JID Oct 12.
    1. Harris LK, Robson A, Lash GE, Aplin JD, Baker PN, et al. (2010) Physiological remodelling of the uterine spiral arteries during pregnancy: uterine natural killer cells mediate smooth muscle cell disruption. Placenta 31: A52.
    1. Hviid L, Marinho CRF, Staalsoe T, Penha-Goncalves C (2010) Of mice and women: rodent models of placental malaria. Trends in Parasitology 26: 412–419.
    1. Harris LK, Clancy OH, Myers JE, Baker PN (2009) Plasma from women with preeclampsia inhibits trophoblast invasion. Reproductive Sciences 16: 1082–1090.
    1. Ganapathy R, Ayling LJ, Whitley GS, Cartwright JE, Thilaganathan B (2006) Effect of first-trimester serum from pregnant women with high-resistance uterine artery Doppler resistance on extravillous trophoblast invasion. Hum Reprod 21: 1295–1298.
    1. Fried M, Muga R, Mismore A, Duffy P (1998) Malaria Elicits Type 1 Cytokines in the Human Placenta: IFNy and TNFα Associated with Pregnancy Outcomes. Journal of Immunology 160: 2523–1530.
    1. Rogerson SJ, Brown GV, Pollina E, Abrams ET, Tadesse E, et al. (2003) Placental tumor necrosis factor-alpha but not gamma interferon is associated with placental malaria and low birth weight in Malawian women. Infection and Immunity 71: 267–270.
    1. Umbers AJ, Boeuf PS, Clapham C, Stanisic DI, Baiwog F, et al. (2011) Placental malaria-associated inflammation disturbs the IGF axis of fetal growth regulation. Journal of Infectious Diseases 203: 561–569.
    1. Neale D, Demasio K, Illuzi J, Chaiworapongsa T, Romero R, et al. (2003) Maternal serum of women with pre-eclampsia reduces trophoblast cell viability: evidence for an increased sensitivity to Fas-mediated apoptosis. J Matern Fetal Neonatal Med 13: 39–44.
    1. Graham CH, Hawley TS, Hawley RG, MacDougall JR, Kerbel RS, et al. (1993) Establishment and characterization of first trimester human trophoblast cells with extended lifespan. Exp Cell Res 206: 204–211.
    1. Straszewski-Chavez SL, Abrahams VM, Alvero AB, Aldo PB, Ma Y, et al. (2009) The isolation and characterization of a novel telomerase immortalized first trimester trophoblast cell line, Swan 71. Placenta 11: 939–948.
    1. Dai Y, Diao Z, Sun H, Qui Z, Hu Y (2011) MicroRNA-155 is involved in the remodelling of human-trophoblast-derived HTR/SVneo cells induced by lipopolysaccharides. Human Reproduction 26: 1882–1891.
    1. Al-Nasiry S, Geusens N, Hanssens M, Luyten C, Pijnenborg R (2007) The use of Alamar Blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. Hum Reprod 22: 1304–1309.
    1. Hamann L, Bedu-Addo G, Eggelte TA, Schumann RR, Mockenhaupt FP (2010) The toll-like receptor 1 variant S248N influences placental malaria. Infect Genet Evol 10: 785–789.
    1. Abrahams VM, Visintin I, Aldo PB, Guller S, Romero R, et al. (2005) A role for TLRs in the regulation of immune cell migration by first trimester trophoblast cells. J Immunol 175: 8096–8104.
    1. Kadyrov M, Kingdom JC, Huppertz B (2006) Divergent trophoblast invasion and apoptosis in placental bed spiral arteries from pregnancies complicated by maternal anemia and early-onset preeclampsia/intrauterine growth restriction. Am J Obstet Gynecol 194: 557–563.
    1. Catarino C, Santos-Silva A, Belo L, Rocha-Pereira P, Rocha S, et al... (2012) Inflammatory Disturbances in Preeclampsia: Relationship between Maternal and Umbilical Cord Blood. J Pregnancy.
    1. Pijnenborg R, Robertson WB, Brosens I, Dixon G (1981) Review article: trophoblast invasion and the establishment of haemochorial placentation in man and laboratory animals. Placenta 2: 71–91.
    1. Muehlenbachs A, Mutabingwa TK, Edmonds S, Fried M, Duffy PE (2006) Hypertension and maternal-fetal conflict during placental malaria. PLoS Med 3: e446.
    1. Rogerson SJ, Hviid L, Duffy PE, Leke RF, Taylor DW (2007) Malaria in pregnancy: pathogenesis and immunity. Lancet Infect Dis 7: 105–117.
    1. Renaud SJ, Postovit LM, Macdonald-Goodfellow SK, McDonald GT, Caldwell JD, et al. (2005) Activated macrophages inhibit human cytotrophoblast invasiveness in vitro. Biol Reprod 73: 237–243.
    1. Renaud SJ, Macdonald-Goodfellow SK, Graham CH (2007) Coordinated regulation of human trophoblast invasiveness by macrophages and interleukin 10. Biol Reprod 76: 448–454.
    1. Aplin JD, Haigh T, Jones CJ, Church HJ, Vicovac L (1999) Development of cytotrophoblast columns from explanted first-trimester human placental villi: role of fibronectin and integrin alpha5beta1. Biol Reprod 60: 828–838.
    1. Greenwood B, Alonso P, ter Kuile FO, Hill J, Steketee RW (2007) Malaria in pregnancy: priorities for research. Lancet Infect Dis 7: 169–174.
    1. Forbes K, Westwood M, Baker PN, Aplin JD (2008) Insulin-like growth factor I and II regulate the life cycle of trophoblast in the developing human placenta. Am J Physiol Cell Physiol 294: C1313–1322.
    1. Jovanovic M, Stefanoska I, Radojcic L, Vicovac L (2010) Interleukin-8 (CXCL8) stimulates trophoblast cell migration and invasion by increasing levels of matrix metalloproteinase (MMP)2 and MMP9 and integrins alpha5 and beta1. Reproduction 139: 789–798.
    1. Lockwood CJ, Oner C, Uz YH, Kayisli UA, Huang SJ, et al. (2008) Matrix metalloproteinase 9 (MMP9) expression in preeclamptic decidua and MMP9 induction by tumor necrosis factor alpha and interleukin 1 beta in human first trimester decidual cells. Biol Reprod 78: 1064–1072.
    1. Huber AV, Saleh L, Bauer P, Husslein P, Knofler M (2006) TNF alpha-mediated induction of PAI-1 restricts invasion of HTR8/SV neo trophoblast cells. Placenta 27: 127–136.
    1. Yagel S, Geva TE, Solomon H, Shimonovitz S, Reich R, et al. (1993) High levels of human chorionic gonadotropin retard first trimester trophoblast invasion in vitro by decreasing urokinase plasminogen activator and collagenase activities. J Clin Endocrinol Metab 77: 1506–1511.
    1. Roth I, Fisher SJ (1999) IL-10 is an autocrine inhibitor of human placental cytotrophoblast MMP-9 production and invasion. Dev Biol 205: 194–204.
    1. Yagel S, Geva TE, Solomon S, Shimonovitz S, Reich R (1993) High levels of human chorionic gonadotropin retard first trimester trophoblast invasion in vitro by decreasing urokinase plasminogen activator and collagenase activities. J Clin Endocrinol Metab 77: 1506–1511.
    1. Jovanovic M, Vicovac L (2009) Interleukin-6 stimulates cell migration, invasion and integrin expression in HTR-8/SVneo cell line. Placenta 30: 320–328.

Source: PubMed

3
Subscribe