Vascular effects of urocortins 2 and 3 in healthy volunteers

Sowmya Venkatasubramanian, Megan E Griffiths, Steven G McLean, Mark R Miller, Rosa Luo, Ninian N Lang, David E Newby, Sowmya Venkatasubramanian, Megan E Griffiths, Steven G McLean, Mark R Miller, Rosa Luo, Ninian N Lang, David E Newby

Abstract

Background: Urocortin 2 and urocortin 3 are endogenous peptides with an emerging role in cardiovascular pathophysiology. We assessed their pharmacodynamic profile and examined the role of the endothelium in mediating their vasomotor effects in vivo in man.

Methods and results: Eighteen healthy male volunteers (23±4 years) were recruited into a series of double-blind, randomized crossover studies using bilateral forearm venous occlusion plethysmography during intra-arterial urocortin 2 (3.6 to 120 pmol/min), urocortin 3 (1.2 to 36 nmol/min), and substance P (2 to 8 pmol/min) in the presence or absence of inhibitors of cyclooxygenase (aspirin), cytochrome P450 metabolites of arachidonic acid (fluconazole), and nitric oxide synthase (L-NMMA). Urocortins 2 and 3 evoked arterial vasodilatation (P<0.0001) without tachyphylaxis but with a slow onset and offset of action. Inhibition of nitric oxide synthase with L-NMMA reduced vasodilatation to substance P and urocortin 2 (P≤0.001 for both) but had little effect on urocortin 3 (P>0.05). Neither aspirin nor fluconazole affected vasodilatation induced by any of the infusions (P>0.05 for all). In the presence of all 3 inhibitors, urocortin 2- and urocortin 3-induced vasodilatation was attenuated (P<0.001 for all) to a greater extent than with L-NMMA alone (P≤0.005).

Conclusions: Urocortins 2 and 3 cause potent and prolonged arterial vasodilatation without tachyphylaxis. These vasomotor responses are at least partly mediated by endothelial nitric oxide and cytochrome P450 metabolites of arachidonic acid. The role of urocortins 2 and 3 remains to be explored in the setting of human heart failure, but they have the potential to have major therapeutic benefits.

Clinical trial registration: http://www.clinicaltrials.gov//. Unique identifier: NCT01096706 and NCT01296607.

Figures

Figure 1.
Figure 1.
Schematic representation of study protocols. A, Protocol 1—incremental intra‐arterial doses of urocortin 2 (Ucn 2; 3.6 to 120 pmol/min) and urocortin 3 (Ucn 3; 1.2 to 36 nmol/min) in the presence (protocol 1a) and absence (protocol 1b) of saline washout. B, Protocol 2—incremental intra‐arterial infusions of Ucn 2 (3.6 to 36 pmol/min), Ucn 3 (1.2 to 12 nmol/min), and substance P (sub P; 2 to 8 pmol/min) in the presence of (1) saline placebo, (2) oral aspirin, (3) “nitric oxide” clamp, (4) intra‐arterial fluconazole, and (5) a combination of oral aspirin, fluconazole, and nitric oxide clamp. L‐NMMA indicates L‐N(G)‐monomethyl arginine citrate.
Figure 2.
Figure 2.
Hemodynamic responses to intra‐arterial infusion of urocortin 2 (Ucn 2; 3.6 to 120 pmol/min) and urocortin 3 (Ucn 3; 1.2 to 36 nmol/min). At a dose of 36 nmol/min, Ucn 3 evoked transient tachycardia associated with a drop in diastolic blood pressure. Open symbols, Ucn 2; closed symbols, Ucn 3; circle, heart rate; square, systolic blood pressure (BP); triangle, diastolic BP; ***P<0.0001; **P=0.004; dose 1=3.6 pmol/min Ucn 2 or 1.2 nmol/min Ucn 3; dose 2=12 pmol/min Ucn 2 or 3.6 nmol/min Ucn 3; dose 3=36 pmol/min Ucn 2 or 12 nmol/min Ucn 3; dose 4=120 pmol/min Ucn 2 or 36 nmol/min Ucn 3; bpm indicates beats per minute.
Figure 3.
Figure 3.
Forearm arterial blood flow responses to increasing doses of urocortin 2 (Ucn 2) and urocortin 3 (Ucn 3). Circle, infused forearm blood flow; square, noninfused forearm blood flow. P<0.0001 at all doses.
Figure 4.
Figure 4.
Pharmacodynamics of urocortin 2 (Ucn 2) and urocortin 3 (Ucn 3). A, Onset and offset of vasodilatory effect of Ucn 2 (left) and Ucn 3 (right) after infusion of highest dose. B, Within‐day reproducibility of Ucn 2 (left) and Ucn 3 (right); P=nonsignificant, first dose response vs second dose response; Ucn 2 and Ucn 3. Closed circle: first dose response; open circle, second dose response.
Figure 5.
Figure 5.
Vasomotor effects of inhibition of endothelial nitric oxide synthase, cycloxygenase, and cytochrome P450 metabolites of arachidonic acid on urocortin 2–, urocortin 3–, and substance P–mediated vasodilatation. Open circle, placebo; closed circle, nitric oxide clamp; closed triangle, combined aspirin (600 mg), nitric oxide clamp, and fluconazole (1.2 μmol/min).

References

    1. Davidson SM, Rybka AE, Townsend PA. The powerful cardioprotective effects of urocortin and the corticotropin releasing hormone (CRH) family. Biochem Pharmacol. 2009; 77:141-150
    1. Davidson SM, Yellon DM. Urocortin: a protective peptide that targets both the myocardium and vasculature. Pharmacol Rep. 2009; 61:172-182
    1. Wiley KE, Davenport AP. CRF2 receptors are highly expressed in the human cardiovascular system and their cognate ligands urocortins 2 and 3 are potent vasodilators. Br J Pharmacol. 2004; 143:508-514
    1. Venkatasubramanian S, Newby DE, Lang NN. Urocortins in heart failure. Biochem Pharmacol. 2010; 80:289-296
    1. Bale TL, Contarino A, Smith GW, Chan R, Gold LH, Sawchenko PE, Koob GF, Vale WW, Lee KF. Mice deficient for corticotropin‐releasing hormone receptor‐2 display anxiety‐like behaviour and are hypersensitive to stress. Nat Genet. 2000; 24:410-414
    1. Coste SC, Kesterson RA, Heldwein KA, Stevens SL, Heard AD, Hollis JH, Murray SE, Hill JK, Pantely GA, Hohimer AR, Hatton DC, Phillips TJ, Finn DA, Low MJ, Rittenberg MB, Stenzel P, Stenzel‐Poore MP. Abnormal adaptations to stress and impaired cardiovascular function in mice lacking corticotropin‐releasing hormone receptor‐2. Nat Genet. 2000; 24:403-409
    1. Davis ME, Pemberton CJ, Yandle TG, Fisher SF, Lainchbury JG, Frampton CM, Rademaker MT, Richards AM. Urocortin 2 infusion in healthy humans: hemodynamic, neurohormonal, and renal responses. J Am Coll Cardiol. 2007; 49:461-471
    1. Davis M, Pemberton C, Yandle T, Fisher S, Lainchbury J, Frampton C, Rademaker M, Richards M. Urocortin 2 infusion in human heart failure. Eur Heart J. 2007; 28:2589.
    1. Rademaker M, Cameron V, Charles C, Richards A. Integrated hemodynamic, hormonal, and renal actions of urocortin 2 in normal and paced sheep: beneficial effects in heart failure. Circulation. 2005; 112:3624.
    1. Rademaker M, Cameron V, Charles C, Richards A. Urocortin 3: haemodynamic, hormonal, and renal effects in experimental heart failure. Eur Heart J. 2006; 27:2088.
    1. Telegdy G, Adamik A. Involvement of CRH receptors in urocortin‐induced hyperthermia. Peptides. 2008; 29:1937-1942
    1. Li C, Chen P, Vaughan J, Lee K‐F, Vale W. Urocortin 3 regulates glucose‐stimulated insulin secretion and energy homeostasis. Proc Natl Acad Sci USA. 2007; 104:4206-4211
    1. Newby DE, Wright RA, Ludlam CA, Fox KA, Boon NA, Webb DJ. An in vivo model for the assessment of acute fibrinolytic capacity of the endothelium. Thromb Haemost. 1997; 78:1242-1248
    1. Newby DE, Wright RA, Labinjoh C, Ludlam CA, Fox KA, Boon NA, Webb DJ. Endothelial dysfunction, impaired endogenous fibrinolysis, and cigarette smoking: a mechanism for arterial thrombosis and myocardial infarction. Circulation. 1999; 99:1411-1415
    1. Chen Z‐W, Huang Y, Yang Q, Li X, Wei W, He G‐W. Urocortin‐induced relaxation in the human internal mammary artery. Cardiovasc Res. 2005; 65:913-920
    1. Smani T, Calderon E, Rodriguez‐Moyano M, Dominguez‐Rodriguez A, Diaz I, Ordóñez A. Urocortin‐2 induces vasorelaxation of coronary arteries isolated from patients with heart failure. Clin Exp Pharmacol Physiol. 2010; 38:71-76
    1. Huang Y, Chan F, Lau C, Tsang S, He G, Chen Z, Yao X. Urocortin‐induced endothelium‐dependent relaxation of rat coronary artery: role of nitric oxide and K+ channels. Br J Pharmacol. 2002; 135:1467.
    1. Sanz E, Monge L, Fernández N, Martínez MA, Martínez‐León JB, Diéguez G, García‐Villalón AL. Relaxation by urocortin of human saphenous veins. Br J Pharmacol. 2002; 136:90-94
    1. Dieterle T, Meili‐Butz S, Bühler K, Morandi C, John D, Buser PT, Rivier J, Vale WW, Peterson KL, Brink M. Immediate and sustained blood pressure lowering by urocortin 2: a novel approach to antihypertensive therapy? Hypertension. 2009; 53:739-744
    1. Chen C‐Y, Doong M‐L, Rivier JE, Taché Y. Intravenous urocortin II decreases blood pressure through CRF(2) receptor in rats. Regul Pept. 2003; 113:125-130
    1. Fekete EM, Zorrilla EP. Physiology, pharmacology, and therapeutic relevance of urocortins in mammals: ancient CRF paralogs. Front Neuroendocrinol. 2007; 28:1-27
    1. Hsu SY, Hsueh AJ. Human stresscopin and stresscopin‐related peptide are selective ligands for the type 2 corticotropin‐releasing hormone receptor. Nat Med. 2001; 7:605-611
    1. Kageyama K, Furukawa K‐I, Miki I, Terui K, Motomura S, Suda T. Vasodilative effects of urocortin II via protein kinase A and a mitogen‐activated protein kinase in rat thoracic aorta. J Cardiovasc Pharmacol. 2003; 42:561-565
    1. Kageyama K, Gaudriault GE, Suda T, Vale WW. Regulation of corticotropin‐releasing factor receptor type 2beta mRNA via cyclic AMP pathway in A7r5 aortic smooth muscle cells. Cell Signal. 2003; 15:17-25
    1. Brar BK, Jonassen AK, Stephanou A, Santilli G, Railson J, Knight RA, Yellon DM, Latchman DS. Urocortin protects against ischemic and reperfusion injury via a MAPK‐dependent pathway. J Biol Chem. 2000; 275:8508-8514
    1. Witherow FN, Dawson P, Ludlam CA, Webb DJ, Fox KAA, Newby DE. Bradykinin receptor antagonism and endothelial tissue plasminogen activator release in humans. Arterioscler Thromb Vasc Biol. 2003; 23:1667-1670
    1. Witherow FN, Helmy A, Webb DJ, Fox KA, Newby DE. Bradykinin contributes to the vasodilator effects of chronic angiotensin‐converting enzyme inhibition in patients with heart failure. Circulation. 2001; 104:2177-2181
    1. Newby DE, Sciberras DG, Mendel CM, Gertz BJ, Boon NA, Webb DJ. Intra‐arterial substance P mediated vasodilatation in the human forearm: pharmacology, reproducibility and tolerability. Br J Clin Pharmacol. 1997; 43:493-499
    1. Lang NN, Gudmundsdottir IJ, Boon NA, Ludlam CA, Fox KA, Newby DE. Marked impairment of protease‐activated receptor type 1‐mediated vasodilation and fibrinolysis in cigarette smokers: smoking, thrombin, and vascular responses in vivo. J Am Coll Cardiol. 2008; 52:33-39
    1. Gudmundsdóttir IJ, Megson IL, Kell JS, Ludlam CA, Fox KAA, Webb DJ, Newby DE. Direct vascular effects of protease‐activated receptor type 1 agonism in vivo in humans. Circulation. 2006; 114:1625-1632
    1. Japp AG, Cruden NL, Amer DAB, Li VKY, Goudie EB, Johnston NR, Sharma S, Neilson I, Webb DJ, Megson IL, Flapan AD, Newby DE. Vascular effects of apelin in vivo in man. J Am Coll Cardiol. 2008; 52:908-913
    1. Affolter JT, McKee SP, Helmy A, Jones CR, Newby DE, Webb DJ. Intra‐arterial vasopressin in the human forearm: pharmacodynamics and the role of nitric oxide. Clin Pharmacol Ther. 2003; 74:9-16
    1. Hoare SRJ, Sullivan SK, Fan J, Khongsaly K, Grigoriadis DE. Peptide ligand binding properties of the corticotropin‐releasing factor (CRF) type 2 receptor: pharmacology of endogenously expressed receptors, G‐protein‐coupling sensitivity and determinants of CRF2 receptor selectivity. Peptides. 2005; 26:457-470
    1. Jain V, Vedernikov YP, Saade GR, Chwalisz K, Garfield RE. Endothelium‐dependent and ‐independent mechanisms of vasorelaxation by corticotropin‐releasing factor in pregnant rat uterine artery. J Pharmacol Exp Ther. 1999; 288:407-413
    1. Schilling L, Kanzler C, Schmiedek P, Ehrenreich H. Characterization of the relaxant action of urocortin, a new peptide related to corticotropin‐releasing factor in the rat isolated basilar artery. Br J Pharmacol. 1998; 125:1164-1171
    1. Grossini E, Molinari C, Mary DASG, Marino P, Vacca G. The effect of urocortin II administration on the coronary circulation and cardiac function in the anaesthetized pig is nitric‐oxide‐dependent. Eur J Pharmacol. 2008; 578:242-248
    1. Lang NN, Cruden NL, Tse GH, Bloomfield P, Ludlam CA, Fox KA, Newby DE. Vascular B1 kinin receptors in patients with congestive heart failure. J Cardiovasc Pharmacol. 2008; 52:438-444
    1. Lang NN, Myles RC, Burton FL, Hall DP, Chin YZ, Boon NA, Newby DE. The vascular effects of rotigaptide in vivo in man. Biochem Pharmacol. 2008; 76:1194-1200
    1. Gudmundsdóttir IJ, Lang NN, Boon NA, Ludlam CA, Webb DJ, Fox KA, Newby DE. Role of the endothelium in the vascular effects of the thrombin receptor (protease‐activated receptor type 1) in humans. J Am Coll Cardiol. 2008; 51:1749-1756
    1. Wilkinson IB, Webb DJ. Venous occlusion plethysmography in cardiovascular research: methodology and clinical applications. Br J Clin Pharmacol. 2001; 52:631-646

Source: PubMed

3
Subscribe