First trimester use of artemisinin-based combination therapy and the risk of low birth weight and small for gestational age

Orvalho Augusto, Andy Stergachis, Stephanie Dellicour, Halidou Tinto, Anifa Valá, Maria Ruperez, Eusébio Macete, Seydou Nakanabo-Diallo, Adama Kazienga, Innocent Valéa, Umberto d'Alessandro, Feiko O Ter Kuile, Gregory S Calip, Peter Ouma, Meghna Desai, Esperança Sevene, Orvalho Augusto, Andy Stergachis, Stephanie Dellicour, Halidou Tinto, Anifa Valá, Maria Ruperez, Eusébio Macete, Seydou Nakanabo-Diallo, Adama Kazienga, Innocent Valéa, Umberto d'Alessandro, Feiko O Ter Kuile, Gregory S Calip, Peter Ouma, Meghna Desai, Esperança Sevene

Abstract

Background: While there is increasing evidence on the safety of artemisinin-based combination therapy (ACT) for the case management of malaria in early pregnancy, little is known about the association between exposure to ACT during the first trimester and the effect on fetal growth.

Methods: Data were analysed from prospective studies of pregnant women enrolled in Mozambique, Burkina Faso and Kenya designed to determine the association between anti-malarial drug exposure in the first trimester and pregnancy outcomes, including low birth weight (LBW) and small for gestational age (SGA). Exposure to anti-malarial drugs was ascertained retrospectively by record linkage using a combination of data collected from antenatal and adult outpatient clinic registries, prescription records and self-reported medication usage by the women. Site-level data synthesis (fixed effects and random effects) was conducted as well as individual-level analysis (fixed effects by site).

Results: Overall, 1915 newborns were included with 92 and 26 exposed to ACT (artemether-lumefantrine) and quinine, respectively. In Burkina Faso, Mozambique and Kenya at recruitment, the mean age (standard deviation) was 27.1 (6.6), 24.2 (6.2) and 25.7 (6.5) years, and the mean gestational age was 24.0 (6.2), 21.2 (5.7) and 17.9 (10.2) weeks, respectively. The LBW prevalence among newborns born to women exposed to ACT and quinine (QNN) during the first trimester was 10/92 (10.9%) and 7/26 (26.9%), respectively, compared to 9.5% (171/1797) among women unexposed to any anti-malarials during pregnancy. Compared to those unexposed to anti-malarials, ACT and QNN exposed women had the pooled LBW prevalence ratio (PR) of 1.13 (95% confidence interval (CI) 0.62-2.05, p-value 0.700) and 2.03 (95% CI 1.09-3.78, p-value 0.027), respectively. Compared to those unexposed to anti-malarials ACT and QNN-exposed women had the pooled SGA PR of 0.85 (95% CI 0.50-1.44, p-value 0.543) and 1.41 (95% CI 0.71-2.77, p-value 0.322), respectively. Whereas compared to ACT-exposed, the QNN-exposed had a PR of 2.14 (95% CI 0.78-5.89, p-value 0.142) for LBW and 8.60 (95% CI 1.29-57.6, p-value 0.027) for SGA. The level of between sites heterogeneity was moderate to high.

Conclusion: ACT exposure during the first trimester was not associated with an increased occurrence of LBW or SGA. However, the data suggest a higher prevalence of LBW and SGA for children born to QNN-exposed pregnancies. The findings support the use of ACT (artemether-lumefantrine) for the treatment of uncomplicated malaria during the first trimester of pregnancy.

Keywords: Artemisinins; Low birth weight; Pharmacovigilance; Prospective cohort; Small for gestational age; Sub-Saharan Africa.

Conflict of interest statement

The findings and conclusions presented in this manuscript are those of the authors and do not necessarily reflect the official position of the US Centers for Disease Control and Prevention. The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Flow chart of the recruited participants in ASAP cohort included in this analysis, 2015
Fig. 2
Fig. 2
Weight at birth mean difference in grams for different sites and random-effects pooled association, ASAP study
Fig. 3
Fig. 3
ASAP site specific and pooled low birth weight prevalence ratios
Fig. 4
Fig. 4
ASAP site specific and pooled small for gestation age prevalence ratios
Fig. 5
Fig. 5
ASAP site specific and pooled prematurity prevalence ratios

References

    1. Briand V, Saal J, Ghafari C, Huynh B-T, Fievet N, Schmiegelow C, et al. Fetal growth restriction is associated with malaria in pregnancy: a prospective longitudinal study in Benin. J Infect Dis. 2016;214:417–425. doi: 10.1093/infdis/jiw158.
    1. McClure EM, Goldenberg RL, Dent AE, Meshnick SR. A systematic review of the impact of malaria prevention in pregnancy on low birth weight and maternal anemia. Int J Gynaecol Obstet. 2013;121:103–109. doi: 10.1016/j.ijgo.2012.12.014.
    1. Kramer MS. Determinants of low birth weight: methodological assessment and meta-analysis. Bull World Health Org. 1987;65:663–737.
    1. Walker PGT, Floyd J, ter Kuile F, Cairns M. Estimated impact on birth weight of scaling up intermittent preventive treatment of malaria in pregnancy given sulphadoxine–pyrimethamine resistance in Africa: a mathematical model. PLoS Med. 2017;14:e1002243. doi: 10.1371/journal.pmed.1002243.
    1. van Eijk AM, Hill J, Noor AM, Snow RW, Ter Kuile FO. Prevalence of malaria infection in pregnant women compared with children for tracking malaria transmission in sub-Saharan Africa: a systematic review and meta-analysis. Lancet Glob Health. 2015;3:e617–e628. doi: 10.1016/S2214-109X(15)00049-2.
    1. Desai M, ter Kuile FO, Nosten F, McGready R, Asamoa K, Brabin B, et al. Epidemiology and burden of malaria in pregnancy. Lancet Infect Dis. 2007;7:93–104. doi: 10.1016/S1473-3099(07)70021-X.
    1. Guyatt HL, Snow RW. Malaria in pregnancy as an indirect cause of infant mortality in sub-Saharan Africa. Trans R Soc Trop Med Hyg. 2001;95:569–576. doi: 10.1016/S0035-9203(01)90082-3.
    1. Guyatt HL, Snow RW. Impact of malaria during pregnancy on low birth weight in sub-Saharan Africa. Clin Microbiol Rev. 2004;17:760–769. doi: 10.1128/CMR.17.4.760-769.2004.
    1. Adams MM, Alexander GR, Kirby RS, Wingate MS. Perinatal epidemiology for public health practice. Berlin: Springer; 2009.
    1. Huynh B-T, Fievet N, Gbaguidi G, Dechavanne S, Borgella S, Guézo-Mévo B, et al. Influence of the timing of malaria infection during pregnancy on birth weight and on maternal anemia in Benin. Am J Trop Med Hyg. 2011;85:214–220. doi: 10.4269/ajtmh.2011.11-0103.
    1. Schmiegelow C, Matondo S, Minja DTR, Resende M, Pehrson C, Nielsen BB, et al. Plasmodium falciparum infection early in pregnancy has profound consequences for fetal growth. J Infect Dis. 2017;216:1601–1610. doi: 10.1093/infdis/jix530.
    1. WHO . A strategic framework for malaria prevention and control during pregnancy in the African region. Geneva: World Health Organization; 2004.
    1. WHO . Guidelines for the treatment of malaria. 3. Geneva: World Health Organization; 2015.
    1. Burger RJ, van Eijk AM, Bussink M, Hill J, ter Kuile FO. Artemisinin-based combination therapy versus quinine or other combinations for treatment of uncomplicated Plasmodium falciparum malaria in the second and third trimester of pregnancy: a systematic review and meta-analysis. Open Forum Infect Dis. 2016;3:1–11. doi: 10.1093/ofid/ofv170.
    1. Chen LJ, Wang MY, Sun WK, Liu MZ. Embryotoxicity and teratogenicity studies on artemether in mice, rats and rabbits. Zhongguo Yao Li Xue Bao. 1984;5:118–122.
    1. Clark RL. Embryotoxicity of the artemisinin antimalarials and potential consequences for use in women in the first trimester. Reprod Toxicol. 2009;28:285–296. doi: 10.1016/j.reprotox.2009.05.002.
    1. White TE, Clark RL. Sensitive periods for developmental toxicity of orally administered artesunate in the rat. Birth Defects Res B Dev Reprod Toxicol. 2008;83:407–417. doi: 10.1002/bdrb.20157.
    1. Longo M, Zanoncelli S, Torre PD, Riflettuto M, Cocco F, Pesenti M, et al. In vivo and in vitro investigations of the effects of the antimalarial drug dihydroartemisinin (DHA) on rat embryos. Reprod Toxicol. 2006;22:797–810. doi: 10.1016/j.reprotox.2006.08.001.
    1. Manyando C, Mkandawire R, Puma L, Sinkala M, Mpabalwani E, Njunju E, et al. Safety of artemether–lumefantrine in pregnant women with malaria: results of a prospective cohort study in Zambia. Malar J. 2010;9:249. doi: 10.1186/1475-2875-9-249.
    1. Hill J, D’Mello-Guyett L, Hoyt J, van Eijk AM, ter Kuile FO, Webster J. Women’s access and provider practices for the case management of malaria during pregnancy: a systematic review and meta-analysis. PLoS Med. 2014;11:e1001688. doi: 10.1371/journal.pmed.1001688.
    1. Dellicour S, ter Kuile FO, Stergachis A. Pregnancy exposure registries for assessing antimalarial drug safety in pregnancy in malaria-endemic countries (Health in Action) PLoS Med. 2008;5:e187. doi: 10.1371/journal.pmed.0050187.
    1. Tinto H, Sevene E, Dellicour S, Calip GS, d’Alessandro U, Macete E, et al. Assessment of the safety of antimalarial drug use during early pregnancy (ASAP): protocol for a multicenter prospective cohort study in Burkina Faso, Kenya and Mozambique. Reprod Health. 2015;12:112. doi: 10.1186/s12978-015-0101-0.
    1. Dellicour S, Desai M, Aol G, Oneko M, Ouma P, Bigogo G, et al. Risks of miscarriage and inadvertent exposure to artemisinin derivatives in the first trimester of pregnancy: a prospective cohort study in western Kenya. Malar J. 2015;14:461. doi: 10.1186/s12936-015-0950-6.
    1. Dellicour S, Krishna S, Sevene E, McGready R, Tinto H, Mosha D, et al. First- trimester artemisinin derivatives and quinine treatments and the risk of adverse pregnancy outcomes in Africa and Asia: a meta-analysis of observational studies. PLoS Med. 2017;14:e1002290. doi: 10.1371/journal.pmed.1002290.
    1. Sacoor C, Nhacolo A, Nhalungo D, Aponte JJ, Bassat Q, Augusto O, et al. Profile: Manhiça Health Research Centre (Manhiça HDSS) Int J Epidemiol. 2013;42:1309–1318. doi: 10.1093/ije/dyt148.
    1. Odhiambo FO, Laserson KF, Sewe M, Hamel MJ, Feikin DR, Adazu K, et al. Profile: the KEMRI/CDC health and demographic surveillance system-western Kenya. Int J Epidemiol. 2012;41:977–987. doi: 10.1093/ije/dys108.
    1. Derra K, Rouamba E, Kazienga A, Ouedraogo S, Tahita MC, Sorgho H, et al. Profile: nanoro health and demographic surveillance system. Int J Epidemiol. 2012;41:1293–1301. doi: 10.1093/ije/dys159.
    1. Ye Y, Wamukoya M, Ezeh A, Emina JB, Sankoh O. Health and demographic surveillance systems: a step towards full civil registration and vital statistics system in sub-Sahara Africa? BMC Public Health. 2012;12:741. doi: 10.1186/1471-2458-12-741.
    1. Flaherman VJ, Schaefer EW, Kuzniewicz MW, Li SX, Walsh EM, Paul IM. Early weight loss nomograms for exclusively breastfed newborns. Pediatrics. 2015;135:e16–e23. doi: 10.1542/peds.2014-1532.
    1. Noel-Weiss J, Courant G, Woodend AK. Physiological weight loss in the breastfed neonate: a systematic review. Open Med. 2008;2:e99–e110.
    1. Greenwood BM, Greenwood AM, Snow RW, Byass P, Bennett S, Hatib N, et al. The effects of malaria chemoprophylaxis given by traditional birth attendants on the course and outcome of pregnancy. Trans R Soc Trop Med Hyg. 1989;83:589–594. doi: 10.1016/0035-9203(89)90362-3.
    1. D’Alessandro U, Langerock P, Bennett S, Francis N, Cham K, Greenwood BM. The impact of a national impregnated bed net programme on the outcome of pregnancy in primigravidae in The Gambia. Trans R Soc Trop Med Hyg. 1996;90:487–492. doi: 10.1016/S0035-9203(96)90289-8.
    1. Villar J, Cheikh Ismail L, Victora CG, Ohuma EO, Bertino E, Altman DG, et al. International standards for newborn weight, length, and head circumference by gestational age and sex: the newborn cross-sectional study of the INTERGROWTH-21st Project. Lancet. 2014;384:857–868. doi: 10.1016/S0140-6736(14)60932-6.
    1. Wilcox AJ. On the importance—and the unimportance—of birthweight. Int J Epidemiol. 2001;30:1233–1241. doi: 10.1093/ije/30.6.1233.
    1. Quinn J-A, Munoz FM, Gonik B, Frau L, Cutland C, Mallett-Moore T, et al. Preterm birth: case definition & guidelines for data collection, analysis, and presentation of immunisation safety data. Vaccine. 2016;34:6047–6056. doi: 10.1016/j.vaccine.2016.03.045.
    1. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Methods. 2010;1:97–111. doi: 10.1002/jrsm.12.
    1. Torman VBL, Camey SA. Bayesian models as a unified approach to estimate relative risk (or prevalence ratio) in binary and polytomous outcomes. Emerg Themes Epidemiol. 2015;12:8. doi: 10.1186/s12982-015-0030-y.
    1. Williamson T, Eliasziw M, Fick G. Log-binomial models: exploring failed convergence. Emerg Themes Epidemiol. 2013;10:14. doi: 10.1186/1742-7622-10-14.
    1. Plummer M. A program for analysis of Bayesian graphical models using Gibbs sampling. In: Proceedings of the 3rd international workshop on distributed statistical computing (DSC 2003). Vienna, Austria. 2003.
    1. Raje A. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2018.
    1. Mosha D, Mazuguni F, Mrema S, Sevene E, Abdulla S, Genton B. Safety of artemether–lumefantrine exposure in first trimester of pregnancy: an observational cohort. Malar J. 2014;13:197. doi: 10.1186/1475-2875-13-197.
    1. Nambozi M, Tinto H, Mwapasa V, Tagbor H, Kabuya J-BB, Hachizovu S, et al. Artemisinin-based combination therapy during pregnancy: outcome of pregnancy and infant mortality: a cohort study. Malar J. 2019;18:105. doi: 10.1186/s12936-019-2737-7.
    1. Rouamba T, Kpoda H, Valea I, Mens P, Gomes M, Tinto H, et al. Safety of antimalarial drug use during early pregnancy in Bobo Dioulasso: examining low birth weight and congenital malformations as potential adverse outcomes. Trop Med Int Health. 2017;22:Abstract 95.
    1. Achan J, Talisuna AO, Erhart A, Yeka A, Tibenderana JK, Baliraine FN, et al. Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria. Malar J. 2011;10:144. doi: 10.1186/1475-2875-10-144.
    1. Petri H, Urquhart J. Channeling bias in the interpretation of drug effects. Stat Med. 1991;10:577. doi: 10.1002/sim.4780100409.
    1. Bardají A, Sigauque B, Bruni L, Romagosa C, Sanz S, Mabunda S, et al. Clinical malaria in African pregnant women. Malar J. 2008;7:27. doi: 10.1186/1475-2875-7-27.
    1. Sangaré LR, Weiss NS, Brentlinger PE, Richardson BA, Staedke SG, Kiwuwa MS, et al. Patterns of anti-malarial drug treatment among pregnant women in Uganda. Malar J. 2011;10:152. doi: 10.1186/1475-2875-10-152.
    1. Lee ACC, Katz J, Blencowe H, Cousens S, Kozuki N, Vogel JP, et al. National and regional estimates of term and preterm babies born small for gestational age in 138 low-income and middle-income countries in 2010. Lancet Glob Health. 2013;1:e26–e36. doi: 10.1016/S2214-109X(13)70006-8.
    1. Moore K, Simpson J, Wiladphaingern J, Aung M, Pimanpanarak M, Raksuansak J, et al. Influence of the number and timing of malaria episodes during pregnancy on prematurity and small-for-gestational-age in an area of low transmission. BMC Med. 2017;15:117. doi: 10.1186/s12916-017-0877-6.
    1. Ministerio da Saude—MISAU/Moçambique, Instituto Nacional de Estatística—INE/Moçambique, ICF International: Moçambique Inquérito Demográfico e de Saúde. 2011.
    1. Kenya National Bureau of Statistics, Ministry of Health/Kenya, National AIDS Control Council/Kenya, Kenya Medical Research Institute, Population NCf, Development/Kenya: Kenya Demographic and Health Survey 2014. Rockville, MD, USA; 2015.

Source: PubMed

3
Subscribe