Secretory Autophagy and Its Relevance in Metabolic and Degenerative Disease

Claudio Daniel Gonzalez, Roxana Resnik, Maria Ines Vaccaro, Claudio Daniel Gonzalez, Roxana Resnik, Maria Ines Vaccaro

Abstract

Proteins to be secreted through so-called "conventional mechanisms" are characterized by the presence of an N-terminal peptide that is a leader or signal peptide, needed for access to the endoplasmic reticulum and the Golgi apparatus for further secretion. However, some relevant cytosolic proteins lack of this signal peptides and should be secreted by different unconventional or "non-canonical" processes. One form of this unconventional secretion was named secretory autophagy (SA) because it is specifically associated with the autophagy pathway. It is defined by ATG proteins that regulate the biogenesis of the autophagosome, its representative organelle. The canonical macroautophagy involves the fusion of the autophagosomes with lysosomes for content degradation, whereas the SA pathway bypasses this degradative process to allow the secretion. ATG5, as well as other factors involved in autophagy such as BCN1, are also activated as part of the secretory pathway. SA has been recognized as a new mechanism that is becoming of increasing relevance to explain the unconventional secretion of a series of cytosolic proteins that have critical biological importance. Also, SA may play a role in the release of aggregation-prone protein since it has been related to the autophagosome biogenesis machinery. SA requires the autophagic pathway and both, secretory autophagy and canonical degradative autophagy are at the same time, integrated and highly regulated processes that interact in ultimate cross-talking molecular mechanisms. The potential implications of alterations in SA, its cargos, pathways, and regulation in human diseases such as metabolic/aging pathological processes are predictable. Further research of SA as potential target of therapeutic intervention is deserved.

Keywords: ATG (autophagy-related) proteins; IL-1β; aggregate-prone proteins; macroautophagy; unconventional protein secretion.

Copyright © 2020 Gonzalez, Resnik and Vaccaro.

Figures

Figure 1
Figure 1
Autophagy overview diagram flow. Autophagosome biogenesis is mediated by ULK1 activation. Here is shown that VMP1, a transmembrane protein, recruits PI3K complex on the ER surface. Then DFCP1 recognizes the PI3P subdomain on the omegasome structure. Besides, WIPI proteins recruit the ATG16-ATG5-ATG12 protein complex on the isolation membrane. In turn, the ATG16-ATG5-ATG12 complex mentioned above mediates LC3 lipidation on the membrane. The genesis of the autophagosome as a double membrane vesicle allows carrying its cargo to the lysosome where the cargo is eventually degraded in the resulting autolysosome as a final structure [reviewed in (15)]. ER, endoplasmic reticulum; PI3K, phosphatidylinositol 3-kinase; PI3P, phosphatidylinositol (3,4,5) triphosphate (PI3P); ULK1, Unc-51-like kinase 1; VMP1, Vacuole Membrane Protein 1; DFCP1, Double FYVE-containing protein 1 (omegasome marker); WIPI, WD40-repeat phosphoinositide-interacting protein (isolation membrane marker); LC3, Microtubule-associated proteins 1A/1B light chain 3B (vesicle maturation/cargo recognition); ATG12, Autophagy-related protein 12 (member of ATG12-ATG5-ATG16L involved in LC3 conjugation to autophagosome membrane); ATG5, autophagy-related protein 5; ATG16, autophagy-related protein 16.

References

    1. Klionsky DJ. Autophagy: from phenomenology to molecular under- standing in less than a decade. Nat Rev Mol Cell Biol. (2007) 8:931–7. 10.1038/nrm2245
    1. Galluzzi L, Pietrocola F, Levine B, Kroemer G. Metabolic control of autophagy. Cell. (2014) 159:1263–76. 10.1016/j.cell.2014.11.006
    1. Yamano K, Fogel A, Wang C, Van der Bliek A, Youle R. Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy. Elife. (2014) 3:e01612. 10.7554/eLife.01612
    1. Deretic V, Kimura T, Timmins G, Moseley P, Chauhan S, Mandell M, et al. . Immunologic manifestations of autophagy. J Clin Invest. (2015) 125:75–84. 10.1172/JCI73945
    1. Subramani S, Malhotra V. Non-autophagic roles of autophagy-related proteins. EMBO Rep. (2013) 14:143–51. 10.1038/embor.2012.220
    1. Ponpuak M, Mandell MA, Kimura T, Chauhan S, Cleyrat C, Deretic V. Secretory autophagy. Curr Opin Cell Biol. (2015) 35:106–16. 10.1016/j.ceb.2015.04.016
    1. Kimura T, Jia J, Kumar S, Choi SW, Gu Y, Mudd M, et al. . Dedicated SNAREs and specialized TRIM cargo receptors mediate secretory autophagy. EMBO J. (2017) 36:42–60. 10.15252/embj.201695081
    1. Zhang M, Kenny S, Ge L, Xu K, Schekman R. Translocation of interleukin-1β into a vesicle intermediate in autophagy-mediated secretion. Elife. (2015) 4:e11205. 10.7554/eLife.11205.023
    1. Li WW, Li J, Bao JK. Microautophagy: lesser-known self-eating. Cell Mol Life Sci. (2012) 69:1125–36. 10.1007/s00018-011-0865-5
    1. Galluzzi L, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cecconi F. Molecular definitions of autophagy and related processes. EMBO J. (2017) 36:1811–36. 10.15252/embj.201796697
    1. Cuervo AM, Wong E. Chaperone-mediated autophagy: roles in disease and aging. Cell Res. (2014) 24:92–104. 10.1038/cr.2013.153
    1. Kaushik S, Cuervo AM. The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol. (2018) 19:365–81. 10.1038/s41580-018-0001-6
    1. Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol. (2011) 27:107–32. 10.1146/annurev-cellbio-092910-154005
    1. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al. . Guidelines for the use and interpretation of assays for monitoring autophagy (3rd Edition). Autophagy. (2016) 12:1–222. 10.1080/15548627.2015.1100356
    1. Grasso D, Renna FJ, Vaccaro MI. Initial steps in mammalian autophagosome biogenesis. Front Cell Dev Biol. (2018) 6:146. 10.3389/fcell.2018.00146
    1. Mercer TJ, Gubas A, Tooze SA. A molecular perspective of mammalian autophagosome biogenesis. J Biol Chem. (2018) 293:5386–95. 10.1074/jbc.R117.810366
    1. Ropolo A, Grasso D, Pardo R, Sacchetti ML, Archange C, Lo Re A, et al. . The pancreatitis-induced vacuole membrane protein 1 triggers autophagy in mammalian cells. J Biol Chem. (2007) 282:37124–33. 10.1074/jbc.M706956200
    1. Nascimbeni AC, Giordano F, Dupont N, Grasso D, Vaccaro MI, Codogno E, et al. . ER-plasma membrane contact sites contribute to autophagosome biogenesis by regulation of local PI3P synthesis. EMBO J. (2017) 36:2018–33. 10.15252/embj.201797006
    1. Molejon MI, Ropolo A, Re AL, Boggio V, Vaccaro MI. The VMP1-beclin 1 interaction regulates autophagy induction. Sci Rep. (2013) 3:1055. 10.1038/srep01055
    1. Mizushima N. The ATG conjugation systems in autophagy. Curr Opin Cell Biol. (2019) 63:1–10. 10.1016/j.ceb.2019.12.001
    1. Wilson MI, Dooley HC, Tooze SA. WIPI2b and Atg16L1: setting the stage for autophagosome formation. Biochem Soc Trans. (2014) 42:1327–34. 10.1042/BST20140177
    1. Nakatogawa H, Ichimura Y, Ohsumi Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell. (2007) 130:165–78. 10.1016/j.cell.2007.05.021
    1. Lee YK, Lee JA. Role of the mammalian ATG8/LC3 family in autophagy: differential and compensatory roles in the spatiotemporal regulation of autophagy. BMB Rep. (2016) 49:424–30. 10.5483/BMBRep.2016.49.8.081
    1. Jiang P, Nishimura T, Sakamaki Y, Itakura E, Hatta T, Natsume T, et al. . The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17. Mol Biol Cell. (2014) 25:1327–37. 10.1091/mbc.e13-08-0447
    1. Gutierrez MG, Munafo DB, Beron W, Colombo MI. Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J Cell Sci. (2004) 117(Pt 13):2687–97. 10.1242/jcs.01114
    1. Noda NN, Fujioka Y, Hanada T, Ohsumi Y, Inagaki F. Structure of the Atg12- Atg5 conjugate reveals a platform for stimulating Atg8-PE conjugation. EMBO Rep. (2013) 14:206–11. 10.1038/embor.2012.208
    1. Otomo C, Metlagel Z, Takaesu G, Otomo T. Structure of the human ATG12~ATG5 conjugate required for LC3 lipidation in autophagy. Nat Struct Mol Biol. (2013) 20:59–66. 10.1038/nsmb.2431
    1. Dooley HC, Wilson MI, Tooze SA. WIPI2B links PtdIns3P to LC3 lipidation through binding ATG16L1. Autophagy. (2015) 11:190–1. 10.1080/15548627.2014.996029
    1. Kraft C, Reggiori F, Peter M. Selective types of autophagy in yeast. Biochim Biophys Acta. (2009) 1793:1404–12. 10.1016/j.bbamcr.2009.02.006
    1. Rogov V, Dötsch V, Johansen T, Kirkin V. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell. (2014) 53:167–78. 10.1016/j.molcel.2013.12.014
    1. Khaminets A, Behl C, Dikic I. Ubiquitin-dependent and independent signals in selective autophagy. Trends Cell Biol. (2015) 26:6–16. 10.1016/j.tcb.2015.08.010
    1. Frake RA, Ricketts T, Menzies FM, Rubinsztein DC. Autophagy and neurodegeneration. J Clin Invest. (2015) 125:65–74. 10.1172/JCI73944
    1. Levine B, Packer M, Codogno PL. Development of autophagy inducers in clinical medicine. J Clin Invest. (2015) 125:14–24. 10.1172/JCI73938
    1. Südhof TC, Rizo J. Synaptic vesicle exocytosis. Cold Spring Harb Perspect Biol. (2011) 3:a005637 10.1101/cshperspect.a005637
    1. Rabouille C, Malhotra V, Nickel W. Diversity in unconventional protein secretion. J Cell Sci. (2012) 125:5251–5. 10.1242/jcs.103630
    1. Jiang S, Dupont N, Castillo EF, Deretic V. Secretory versus degradative autophagy: unconventional secretion of inflammatory mediators. J Innate Immun. (2013) 5:471–9. 10.1159/000346707
    1. New J, Thomas SM. Autophagy-dependent secretion: mechanism, factors secreted, and disease implications. Autophagy. (2019) 15:1682–93. 10.1080/15548627.2019.1596479
    1. Lee JG, Takahama S, Zhang G, Tomarev S, Ye Y. Unconventional secretion of misfolded proteins promotes adaptation to proteasome dysfunction in mammalian cells. Nat Cell Biol. (2016) 18:765–76. 10.1038/ncb3372
    1. Xu J, Camfield R, Gorski SM. The interplay between exosomes and autophagy - partners in crime. J Cell Sci. (2018) 131:jcs215210. 10.1242/jcs.215210
    1. Schweers RL, Zhang J, Randall MS, Loyd MR, Li W, Dorsey FC, et al. . NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci USA. (2007) 104:19500–5. 10.1073/pnas.0708818104
    1. Gerstenmaier L, Pilla R, Herrmann L, Herrmann H, Prado M, Villafano GJ, et al. . The autophagic machinery ensures nonlytic transmission of mycobacteria. Proc Natl Acad Sci USA. (2015) 112:E687–92. 10.1073/pnas.1423318112
    1. Gee HY, Noh SH, Tang BL, Kim KH, Lee MG. Rescue of DeltaF508-CFTR trafficking via a GRASP-dependent unconventional secretion pathway. Cell. (2011) 146:746–60. 10.1016/j.cell.2011.07.021
    1. Kraya AA, Piao S, Xu X, Zhang G, Herlyn M, Gimotty P, et al. . Identification of secreted proteins that reflect autophagy dynamics within tumor cells. Autophagy. (2015) 11:60–74. 10.4161/15548627.2014.984273
    1. Deretic V. Autophagy: an emerging immunological paradigm. J Immunol. (2012) 189:15–20. 10.4049/jimmunol.1102108
    1. Dupont N, Jia S, Pilli M, Ornatowsking W, Bhattacharya D, Deretic V. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1beta. EMBO J. (2011) 30:4701–11. 10.1038/emboj.2011.398
    1. Thorburn J, Horita H, Redzic J, Hansen K, Frankel AE, Thorburn A. Autophagy regulates selective HMGB1 release in tumor cells that are destined to die. Cell Death Differ. (2009) 16:175–83. 10.1038/cdd.2008.143
    1. Ohman T, Teirilä L, Lahesmaa-Korpinen AM, Cypryk W, Veckman V, Shinobu Saijo S, et al. . Dectin-1 pathway activates robust autophagy-dependent unconventional protein secretion in human macrophages. J Immunol. (2014) 192:5952–62. 10.4049/jimmunol.1303213
    1. Ejlerskov P, Rasmussen I, Nielsen TT, Bergström AL, Tohyama Y, Jensen PH, et al. . Tubulin polymerization-promoting protein (TPPP/p25alpha) promotes unconventional secretion of alpha-synuclein through exophagy by impairing autophagosome- lysosome fusion. J Biol Chem. (2013) 288:17313–35. 10.1074/jbc.M112.401174
    1. Iguchi Y, Eid L, Parent M, Soucy G, Bareil C, Riku Y, et al. . Exosome secretion is a key pathway for clearance of pathological TDP-43. Brain. (2016) 139(Pt 12):3187–201. 10.1093/brain/aww237
    1. Yang Y, Qin M, Bao P, Xu W, Xu J. Secretory carrier membrane protein 5 is an autophagy inhibitor that promotes the secretion of α-synuclein via exosome. PLoS ONE. (2017) 12:e0180892. 10.1371/journal.pone.0180892
    1. Urano Y, Mori C, Fuji A, Konno K, Yamamoto T, Yashirogi S, et al. . 6-Hydroxydopamine induces secretion of PARK7/DJ-1 via autophagy-based unconventional secretory pathway. Autophagy. (2018) 14:1943–58. 10.1080/15548627.2018.1493043
    1. Bel S, Pendse M, Wang Y, Li Y, Kelly A, Ruhn KA, et al. . Paneth cells secrete lysozyme via secretory autophagy during bacterial infection of the intestine. Science. (2017) 357:1047–52 10.1126/science.aal4677
    1. Noh SH, Kim Y, Piao H, Kim J, Kang CM, et al. . Specific autophagy and ESCRT components participate in the unconventional secretion of CFTR. Autophagy. (2018) 14:1761–78. 10.1080/15548627.2018.1489479
    1. Iula L, Keitelman IA, Sabbione F, Fuentes F, Guzman M, Galletti JG, et al. . Autophagy Mediates interleukin-1β secretion in human neutrophils. Front Immunol. (2018) 9:269. 10.3389/fimmu.2018.00269
    1. Son SM, Cha MY, Choi H, Kang S, Choi H, Lee MS, et al. . Insulin-degrading enzyme secretion from astrocytes is mediated by an autophagy-based unconventional secretory pathway in Alzheimer disease. Autophagy. (2016) 12:784–800. 10.1080/15548627.2016.1159375
    1. Steneberg P, Bernardo L, Edfalk S, Lundberg L, Backlund F, Östenson CG, et al. . The type 2 diabetes-associated gene ide is required for insulin secretion and suppression of α-synuclein levels in β-cells. Diabetes. (2013) 62:2004–14. 10.2337/db12-1045
    1. Nilsson P, Loganathan K, Sekiguchi M, Matsuba Y, Hui K, Tsubuki S, et al. A β secretion and plaque formation depend on autophagy. Cell Rep. (2013) 5:61–9. 10.1016/j.celrep.2013.08.042
    1. van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. (2018) 19:213–28. 10.1038/nrm.2017.125
    1. Théry C, Witwer K, Aikawa E, Alcaraz MJ, Anderson D, Andriantsitohaina R, et al. . Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. (2018) 7:1535750. 10.1080/20013078.2018.1535750
    1. Cheng Q, Li X, Wang Y, Dong M, Zhan FH, Liu J. (2018). The ceramide pathway is involved in the survival, apoptosis and exosome functions of human multiple myeloma cells in vitro. Acta Pharmacol Sin. (2018) 39:561–568. 10.1038/aps.2017.118
    1. Claude-Taupin A, Bissa B, Jia J, Gu Y, Deretic V. Role of autophagy in IL-1β export and release from cells. Semin Cell Dev Biol. (2018) 83:36–41. 10.1016/j.semcdb.2018.03.012
    1. Xu Y, Cui L, Dibello A, Wang L, Lee J, Saidi L, et al. DNAJC5 facilitates USP19-dependent unconventional secretion of misfolded cytoso- lic proteins. Cell Discov. (2018) 4:11 10.1038/s41421-018-0012-7
    1. Guo H, Chitiprolu M, Roncevic L, Javalet C, Hemming FJ, Trung MT. Atg5 disassociates the V 1 V 0 -ATPase to promote exosome production and tumor metastasis independent of canonical macroautophagy. Dev Cell. (2017) 43:716–730.e7. 10.1016/j.devcel.2017.11.018
    1. Leidal M, Huang H, Marsh T, Solvik T, Zhang D, Ye J, et al. . The LC3-conjugation machinery specifies the loading of RNA-binding proteins into extracellular vesicles. Nat Cell Biol. (2020) 22:187–99. 10.1038/s41556-019-0450-y
    1. An H, Harper JW. Systematic analysis of ribophagy in human cells reveals bystander flux during selective autophagy. Nat Cell Biol. (2018) 20:135–43. 10.1038/s41556-017-0007-x
    1. Grasso D, Ropolo A, Lo Ré A, Boggio V, Molejón MI, Iovanna JL. Zymophagy, a novel selective autophagy pathway mediated by VMP1-USP9x-p62, prevents pancreatic cell death. J Biol Chem. (2011) 286:8308–24. 10.1074/jbc.M110.197301
    1. Vaccaro MI. Zymophagy: selective autophagy of secretory granules. Int J Cell Biol. (2012) 2012:396705. 10.1155/2012/396705
    1. Cavalli G, Cenci S. Autophagy and protein secretion. J Mol Biol. (2020). 10.1016/j.jmb.2020.01.015. [Epub ahead of print].
    1. Pomilio C, Gorojod RM, Riudavets M, Vinuesa A, Presa J, Gregosa A, et al. . Microglial autophagy is impaired by prolonged exposure to β-amyloid peptides: evidence from experimental models and Alzheimer's disease patients. Geroscience. (2020). 10.1007/s11357-020-00161-9. [Epub ahead of print].
    1. Glebov K, Schütze S, Walter J. Functional relevance of a novel SlyX motif in non-conventional secretion of insulin-degrading enzyme. J Biol Chem. (2011) 286:22711–5. 10.1074/jbc.C110.217893
    1. Ghosh S, Watanabe RM, Valle TT, Hauser ER, Magnuson VL, Langefeld CD, et al. . The Finland-United States investigation of non-insulin-dependent diabetes mellitus genetics (FUSION) study. I. An autosomal genome scan for genes that predispose to type 2 diabetes. Am J Hum Genet. (2000) 67, 1174–85. 10.1016/S0002-9297(07)62948-6
    1. Kim M, Hersh LB, Leissring MA, Ingelsson M, Matsui T, Farris W, et al. Decreased catalytic activity of the insulin-degrading enzyme in chromosome 10-linked Alzheimer's disease families. J Biol Chem. (2007) 282:7825–32. 10.1074/jbc.M609168200
    1. Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, et al. . A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. (2007) 445:881–5. 10.1038/nature05616
    1. Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, et al. . Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. (2007) 316:1336–41. 10.1126/science.1142364
    1. Flannick J, Thorleifsson G, Beer NL, Jacobs SB, Grarup N, Burtt NP, et al. . Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat Genet. (2014) 46:357–63. 10.1038/ng.2915
    1. Tang J. Targeting insulin-degrading enzyme to treat type 2 diabetes. Trends Endocrinol Metab. (2015) 27:24–34. 10.1016/j.tem.2015.11.003
    1. Tamboli IY, Barth E, Christian L, Siepmann M, Kumar S, Singh S, et al. Statins promote the degradation of extracellular amyloid b-peptide by microglia via stimulation of exosome-associated insulin-degrading enzyme (IDE) secretion. J Biol Chem. (2010) 285:37405–14. 10.1074/jbc.M110.149468
    1. Markowicz-Piasecka M, Sikora J, Szydłowska A, Skupien A, Mikiciuk-Olasik E, Huttunen KM. Metformin - a future therapy for neurodegenerative diseases: theme: drug discovery, development and delivery in Alzheimer disease. Pharm Res. (2017) 34:2614–27. 10.1007/s11095-017-2199-y
    1. Chen JL, Luo C, Pu D, Zhang GQ, Zhao YX, Sun Y, et al. . Metformin attenuates diabetes-induced tau hyperphosphorylation in vitro and in vivo by enhancing autophagic clearance. Exp Neurol. (2019) 311:44–56. 10.1016/j.expneurol.2018.09.008
    1. Hull RL, Shen Z, Watts MR, Kodama K, Carr DB, Utzschneider KM, et al. Long term treatment with rosiglitazone and metformin reduce the extent of, but do not prevent, islet amyloid deposition in mice expressing the gene for human islet amyloid polypeptide. Diabetes. (2005) 54:2235–44. 10.2337/diabetes.54.7.2235
    1. Hull RL, Andrikopoulos S, Verchere CB, Vidal J, Wang F, Cnop M. Increased dietary fat promotes islet amyloid formation and ß-cell secretory dysfunction n in a transgenic mouse model of islet amyloid. Diabetes. (2003) 52:372–9. 10.2337/diabetes.52.2.372
    1. Xia J, Lu L, Jin C, Wang S, Zhou J, Ni Y, et al. . Effects of short term lead exposure on gut microbiota and hepatic metabolism in adult zebrafish. Comp Biochem Physiol C Toxicol Pharmacol. (2018) 209:1–8. 10.1016/j.cbpc.2018.03.007
    1. Kim J, Cheon H, Jeong YT, Quan W, Kim KH, Cho JM, et al. . Amyloidogenic peptide oligomer accumulation in autophagy-deficient β cells induces diabetes. J Clin Invest. (2014) 124:3311–24. 10.1172/JCI69625
    1. Rivera JF, Gurlo T, Daval M, Huang CJ, Matveyenko AV, Butler PC, et al. . IAPP disrupts the autophagy/lysosomal pathway in pancreatic β-cells: protective role of p62-positive cytoplasmic inclusions. Cell Death Differ. (2010) 18:415–26. 10.1038/cdd.2010.111
    1. Rivera JF, Costes S, Gurlo T, Glabe CG, Butler PC. Autophagy defends pancreatic β cells from human islet amyloid polypeptide-induced toxicity. J Clin Invest. (2014) 124:3489–500. 10.1172/JCI71981
    1. Shigihara N, Fukunaka A, Hara A, Komiya K, Honda A, et al. . Human IAPP–induced pancreatic β cell toxicity and its regulation by autophagy. J Clin Invest. (2014) 124:3634–44. 10.1172/JCI69866
    1. Cortes CJ, La Spada AR. The many faces of autophagy dysfunction in Huntington's disease: from mechanism to therapy. Drug Discov Today. (2014) 19:963–71. 10.1016/j.drudis.2014.02.014
    1. Mukherjee A, Soto C. Prion-like protein aggregates and type 2 diabetes. Cold Spring Harb Perspect Med. (2017) 7:a024315. 10.1101/cshperspect.a024315
    1. Mukherjee A, Morales-Scheihing D, Salvadores N, Moreno-Gonzalez I, Gonzalez C, Taylor-Presse K. Induction of IAPP amyloid deposition and associated diabetic abnormalities by a prion-like mechanism. J Exp Med. (2017) 214:2591–610. 10.1084/jem.20161134
    1. Hogan MF, Meier DT, Zraika S, Templin AT, Mellati M, Hull RL, et al. Inhibition of insulin-degrading enzyme does not increase islet amyloid deposition in vitro. Endocrinology. (2016) 157:3462–8. 10.1210/en.2016-1410
    1. Geng X, Haiyan L, Wang J, Li L, Swanson AL, Sun M, et al. α-Synuclein binds the KATP channel at insulin-secretory granules and inhibits insulin secretion. Am J Physiol Endocrinol Metab. (2011) 300:E276–86. 10.1152/ajpendo.00262.2010
    1. Sharma SK, Chorell E, Steneberg P, Vernersson-Lindahl E, Edlund H, Wittung-Stafshede P. Insulin-degrading enzyme is activated b the C-terminus of α-synuclein. Biochem Biophys Res Commun. (2015) 466:192–5. 10.1016/j.bbrc.2015.09.002
    1. Burré J, Sharma M, Tsetsenis T, Buchman V, Etherton MR, Südhof TC. Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science. (2010) 329:1663–7. 10.1126/science.1195227
    1. Diao J, Burré J, Vivona S, Cipriano DJ, Sharma M, Kyoung M, et al. . Native α-synuclein induces clustering of synaptic-vesicle mimics via binding to phospholipids and synaptobrevin-2/VAMP2. Elife. (2013) 2:e00592. 10.7554/eLife.00592
    1. Dehay B, Decressac M, Bourdenx M, Guadagnino I, Fernagut PO, Tamburrino A, et al. . Targeting α-synuclein: therapeutic options. Mov Disord. (2016) 31:882–8. 10.1002/mds.26568
    1. Kim MJ, Deng HX, Wong YC, Siddique T, Krainc D. The Parkinson's disease-linked protein TMEM230 is required for Rab8a-mediated secretory vesicle trafficking and retromer trafficking. Hum Mol Genet. (2017) 26:729–41. 10.1093/hmg/ddw413
    1. Sproviero D, La Salvia S, Gianinni M, Crippa V, Gagliardi S, Bernuzzi S, et al. . Pathological proteins are transported by extracellular vesicles of sporadic amyotrophic lateral sclerosis patients. Front Neurosci. (2018) 12:487. 10.3389/fnins.2018.00487
    1. Murthy A, Li Y, Peng I, Reichelt M, Katakam AK, Noubade R, et al. . A Crohn's disease variant in Atg16l1 enhances its degradation by caspase 3. Nature. (2014) 506:456–62. 10.1038/nature13044
    1. Bel S, Hooper LV. Secretory autophagy of lysozyme in Paneth cells. Autophagy. (2018) 14:719–21. 10.1080/15548627.2018.1430462
    1. Wang LJ, Huang HY, Huang MP, Liou W, Chang YT, Wu CC, et al. . The microtubule-associated protein, EB1, Links AIM2 inflammasomes with autophagy-dependent secretion. J Biol Chem. (2014) 289:29322–33. 10.1074/jbc.M114.559153
    1. Yoshimura A, Hara W, Kaneko T, Kato I. Secretion of IL-1β, TNF-α, IL-8 and IL-1ra by human polymorphonuclear leukocytes in response to lipopolysaccharides from periodontopathic bacteria. J Periodont Res. (1997) 32:279–86. 10.1111/j.1600-0765.1997.tb00535.x
    1. Zaaber I, Mestiri S, Hammedi H, Marmouch H, Mahjoub S, Tensaout BB, et al. Association of interleukin-1β and interleukin-4 gene variants with autoimmune thyroid diseases in tunisian population. Immunol Invest. (2016) 45:284–97. 10.3109/08820139.2016.1153650
    1. Zhao G, Dharmadhikari G, Maedler K, Meyer-Hermann M. Possible role of interleukin-1β in type 2 diabetes onset and implications for antiinflammatory therapy strategies. PLoS Comput Biol. (2014) 10:e1003798 10.1371/journal.pcbi.1003798
    1. Reddy S, Krogvold L, Martin C, Holand R, Choi J, Woo H, et al. . Distribution of IL-1β immunoreactive cells in pancreatic biopsies from living volunteers with new-onset type 1 diabetes: comparison with donors without diabetes and with longer duration of disease. Diabetologia. (2018) 61:1362–73. 10.1007/s00125-018-4600-8
    1. Böni-Schnetzler M, Thorne J, Parnaud G, Marselli L, Ehses JA, Kerr-Conte J, et al. . Increased interleukin (IL)-1beta messenger ribonucleic acid expression in beta-cells of individuals with type 2 diabetes and regulation of IL-1beta in human islets by glucose and autostimulation. J Clin Endocrinol Metab. (2008) 93:4065–74. 10.1210/jc.2008-0396
    1. Shi C, Shenderov K, Huang N, Kabat J, Abu-Asab M, Fitzgerals KA, et al. . Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol. (2012) 13:255–63. 10.1038/ni.2215
    1. Mann SM, Kanneganti TD. Regulation of lysosomal dynamics and autophagy by CTSB/cathepsin B. Autophagy. (2016) 12:2504–5. 10.1080/15548627.2016.1239679
    1. Guo Q, Wu Y, Hou Y, Liu Y, Liu T, Zhang H, et al. . Cytokine secretion and pyroptosis of thyroid follicular cells mediated by enhanced NLRP3, NLRP1, NLRC4, and AIM2 inflammasomes are associated with autoimmune thyroiditis. Front Immunol. (2018) 9:1197. 10.3389/fimmu.2018.01197
    1. Lakatos P, Foldes J, Horvath C, Kiss L, Tatrai A, Takacs I, et al. . Serum interleukin-6 and bone metabolism in patients with thyroid function disorders. J Clin Endocrinol Metab. (1997) 82:78–81. 10.1210/jc.82.1.78
    1. Kurihara N, Bertolini D, Sida T, Akiyama Y, Roodman GD, et al. . IL-6 stimulates osteoclast-like multinucleated cell formation in long term human marrow cultures by inducing IL-1 release. J Immunol. (1990) 144:4226–30.
    1. Simsek G, Karter Y, Aydin S, Uzun H. Osteoporotic cytokines and bone metabolism on rats with induced hyperthyroidism; changes as a result of reversal to euthyroidism. Chin J Physiol. (2003) 4:181–6.
    1. McLaughlin SK, Olsen SN, Dake B, et al. . The RasGAP gene, RASAL2, is a tumor and metastasis suppressor. Cancer Cell. (2013) 24:365–78. 10.1016/j.ccr.2013.08.004
    1. Wang X, Yin X, Yang Y. Rasal2 suppresses breast cancer cell proliferation modulated by secretory autophagy. Mol Cell Biochem. (2019) 462:115–22. 10.1007/s11010-019-03615-7
    1. New J, Arnold L, Ananth M, Alvi S, Thornton M, Werner L, et al. . Secretory autophagy in cancer-associated fibroblasts promotes head and neck cancer progression and offers a novel therapeutic target. Cancer Res. (2017) 77:6679–91. 10.1158/0008-5472.CAN-17-1077
    1. Radulescu RT, Hufnagel C, Luppa P, Hellebrand H, Kuo WL, Rosner MR, et al. . Immunohistochemical demonstration of the zinc metalloprotease insulin-degrading enzyme in normal and malignant human breast: correlation with tissue insulin levels. Int J Oncol. (2007) 30:73–80. 10.3892/ijo.30.1.73
    1. Radulescu RT, Duckworth WC, Levy JL, Fawcett J. Retinoblastoma protein co-purifies with proteasomal insulin-degrading enzyme: implications for cell proliferation control. Biochem Biophys Res Commun. (2010) 395:196–9. 10.1016/j.bbrc.2010.03.157
    1. Gonzalez CD, Alvarez S, Ropolo A, Rosenzvit C, Gonzalez Bagnes MF, Vaccaro MI. Autophagy, Warburg, and Warburg reverse effects in human cancer. Bio Med Res Int. (2014) 2014:926729. 10.1155/2014/926729
    1. Bhansali S, Bhansali A, Dutta P, Walia R, Dhawan V. Metformin upregulates mitophagy in patients with T2DM: a randomized placebo-controlled study. J Cell Mol Med. (2020) 24:2832–46. 10.1111/jcmm.14834
    1. Wang M, Qu S, Ma J, Wang X, Yang Y. Metformin suppresses LPS-induced inflammatory responses in macrophage and ameliorates allergic contact dermatitis in mice via autophagy. Biol Pharm Bull. (2020) 43:129–37. 10.1248/bpb.b19-00689
    1. Nnah IC, Lee CH, Wessling-Resnick M. Iron potentiates microglial interleukin-1β secretion induced by amyloid-β. J Neurochem. (2018) 11:129–143. 10.3390/ph11040129
    1. Terabe K, Ohashi Y, Tsuchiya S, Ishizuka S, Knudson CB, Knudson W. Chondroprotective effects of 4-methylumbelliferone and hyaluronan synthase-2 overexpression involve changes in chondrocyte energy metabolism. J Biol Chem. (2019) 294:17799–817. 10.1074/jbc.RA119.009556

Source: PubMed

3
Subscribe