The Impact of Caloric Restriction on the Epigenetic Signatures of Aging

Noémie Gensous, Claudio Franceschi, Aurelia Santoro, Maddalena Milazzo, Paolo Garagnani, Maria Giulia Bacalini, Noémie Gensous, Claudio Franceschi, Aurelia Santoro, Maddalena Milazzo, Paolo Garagnani, Maria Giulia Bacalini

Abstract

Aging is characterized by an extensive remodeling of epigenetic patterns, which has been implicated in the physiopathology of age-related diseases. Nutrition plays a significant role in modulating the epigenome, and a growing amount of data indicate that dietary changes can modify the epigenetic marks associated with aging. In this review, we will assess the current advances in the relationship between caloric restriction, a proven anti-aging intervention, and epigenetic signatures of aging. We will specifically discuss the impact of caloric restriction on epigenetic regulation and how some of the favorable effects of caloric restriction on lifespan and healthspan could be mediated by epigenetic modifications.

Keywords: aging; caloric restriction; epigenetic clocks; nutrition.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Goldsmith T.C. On the programmed/non-programmed aging controversy. Biochem. Mosc. 2012;77:729–732. doi: 10.1134/S000629791207005X.
    1. Blagosklonny M.V. Aging is not programmed. Cell Cycle. 2013;12:3736–3742. doi: 10.4161/cc.27188.
    1. Kowald A., Kirkwood T.B.L. Can aging be programmed? A critical literature review. Aging Cell. 2016;15:986–998. doi: 10.1111/acel.12510.
    1. Kennedy B.K., Berger S.L., Brunet A., Campisi J., Cuervo A.M., Epel E.S., Franceschi C., Lithgow G.J., Morimoto R.I., Pessin J.E., et al. Geroscience: linking aging to chronic disease. Cell. 2014;159:709–713. doi: 10.1016/j.cell.2014.10.039.
    1. López-Otín C., Blasco M.A., Partridge L., Serrano M., Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–1217. doi: 10.1016/j.cell.2013.05.039.
    1. Liang Y., Liu C., Lu M., Dong Q., Wang Z., Wang Z., Xiong W., Zhang N., Zhou J., Liu Q., et al. Calorie restriction is the most reasonable anti-ageing intervention: a meta-analysis of survival curves. Sci. Rep. 2018;8:5779. doi: 10.1038/s41598-018-24146-z.
    1. Colman R.J., Anderson R.M., Johnson S.C., Kastman E.K., Kosmatka K.J., Beasley T.M., Allison D.B., Cruzen C., Simmons H.A., Kemnitz J.W., et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science. 2009;325:201–204. doi: 10.1126/science.1173635.
    1. Mattison J.A., Roth G.S., Beasley T.M., Tilmont E.M., Handy A.M., Herbert R.L., Longo D.L., Allison D.B., Young J.E., Bryant M., et al. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature. 2012;489:318–321. doi: 10.1038/nature11432.
    1. Fontana L., Partridge L., Longo V.D. Extending healthy life span--from yeast to humans. Science. 2010;328:321–326. doi: 10.1126/science.1172539.
    1. Balasubramanian P., Howell P.R., Anderson R.M. Aging and Caloric Restriction Research: A Biological Perspective With Translational Potential. EBioMedicine. 2017;21:37–44. doi: 10.1016/j.ebiom.2017.06.015.
    1. Pal S., Tyler J.K. Epigenetics and aging. Sci. Adv. 2016;2:e1600584. doi: 10.1126/sciadv.1600584.
    1. Sen P., Shah P.P., Nativio R., Berger S.L. Epigenetic Mechanisms of Longevity and Aging. Cell. 2016;166:822–839. doi: 10.1016/j.cell.2016.07.050.
    1. Calvanese V., Lara E., Kahn A., Fraga M.F. The role of epigenetics in aging and age-related diseases. Ageing Res. Rev. 2009;8:268–276. doi: 10.1016/j.arr.2009.03.004.
    1. Gensous N., Bacalini M.G., Pirazzini C., Marasco E., Giuliani C., Ravaioli F., Mengozzi G., Bertarelli C., Palmas M.G., Franceschi C., et al. The epigenetic landscape of age-related diseases: The geroscience perspective. Biogerontology. 2017 doi: 10.1007/s10522-017-9695-7.
    1. Bacalini M.G., Friso S., Olivieri F., Pirazzini C., Giuliani C., Capri M., Santoro A., Franceschi C., Garagnani P. Present and future of anti-ageing epigenetic diets. Mech. Ageing Dev. 2014;136–137:101–115. doi: 10.1016/j.mad.2013.12.006.
    1. Jung M., Pfeifer G.P. Aging and DNA methylation. BMC Biol. 2015;13:7. doi: 10.1186/s12915-015-0118-4.
    1. Zampieri M., Ciccarone F., Calabrese R., Franceschi C., Bürkle A., Caiafa P. Reconfiguration of DNA methylation in aging. Mech. Ageing Dev. 2015;151:60–70. doi: 10.1016/j.mad.2015.02.002.
    1. Bollati V., Schwartz J., Wright R., Litonjua A., Tarantini L., Suh H., Sparrow D., Vokonas P., Baccarelli A. Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mech. Ageing Dev. 2009;130:234–239. doi: 10.1016/j.mad.2008.12.003.
    1. Luo Y., Lu X., Xie H. Dynamic Alu methylation during normal development, aging, and tumorigenesis. Biomed. Res. Int. 2014;2014:784706. doi: 10.1155/2014/784706.
    1. Bell J.T., Tsai P.-C., Yang T.-P., Pidsley R., Nisbet J., Glass D., Mangino M., Zhai G., Zhang F., Valdes A., et al. Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population. PLoS Genet. 2012;8:e1002629. doi: 10.1371/journal.pgen.1002629.
    1. Bell C.G., Xia Y., Yuan W., Gao F., Ward K., Roos L., Mangino M., Hysi P.G., Bell J., Wang J., et al. Novel regional age-associated DNA methylation changes within human common disease-associated loci. Genome Biol. 2016;17:193. doi: 10.1186/s13059-016-1051-8.
    1. Rakyan V.K., Down T.A., Maslau S., Andrew T., Yang T.-P., Beyan H., Whittaker P., McCann O.T., Finer S., Valdes A.M., et al. Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res. 2010;20:434–439. doi: 10.1101/gr.103101.109.
    1. Christensen B.C., Houseman E.A., Marsit C.J., Zheng S., Wrensch M.R., Wiemels J.L., Nelson H.H., Karagas M.R., Padbury J.F., Bueno R., et al. Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet. 2009;5:e1000602. doi: 10.1371/journal.pgen.1000602.
    1. Fraga M.F., Ballestar E., Paz M.F., Ropero S., Setien F., Ballestar M.L., Heine-Suñer D., Cigudosa J.C., Urioste M., Benitez J., et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl. Acad. Sci. USA. 2005;102:10604–10609. doi: 10.1073/pnas.0500398102.
    1. Maegawa S., Lu Y., Tahara T., Lee J.T., Madzo J., Liang S., Jelinek J., Colman R.J., Issa J.-P.J. Caloric restriction delays age-related methylation drift. Nat. Commun. 2017;8:539. doi: 10.1038/s41467-017-00607-3.
    1. Tan Q., Heijmans B.T., Hjelmborg J.V.B., Soerensen M., Christensen K., Christiansen L. Epigenetic drift in the aging genome: a ten-year follow-up in an elderly twin cohort. Int J Epidemiol. 2016;45:1146–1158. doi: 10.1093/ije/dyw132.
    1. Mendelsohn A.R., Larrick J.W. Epigenetic Drift Is a Determinant of Mammalian Lifespan. Rejuvenation Res. 2017;20:430–436. doi: 10.1089/rej.2017.2024.
    1. Gentilini D., Garagnani P., Pisoni S., Bacalini M.G., Calzari L., Mari D., Vitale G., Franceschi C., Di Blasio A.M. Stochastic epigenetic mutations (DNA methylation) increase exponentially in human aging and correlate with X chromosome inactivation skewing in females. Aging. 2015;7:568–578. doi: 10.18632/aging.100792.
    1. Miyamura Y., Tawa R., Koizumi A., Uehara Y., Kurishita A., Sakurai H., Kamiyama S., Ono T. Effects of energy restriction on age-associated changes of DNA methylation in mouse liver. Mutat. Res. 1993;295:63–69. doi: 10.1016/0921-8734(93)90002-K.
    1. Hass B.S., Hart R.W., Lu M.H., Lyn-Cook B.D. Effects of caloric restriction in animals on cellular function, oncogene expression, and DNA methylation in vitro. Mutat. Res. 1993;295:281–289. doi: 10.1016/0921-8734(93)90026-Y.
    1. Ions L.J., Wakeling L.A., Bosomworth H.J., Hardyman J.E.J., Escolme S.M., Swan D.C., Valentine R.A., Mathers J.C., Ford D. Effects of Sirt1 on DNA methylation and expression of genes affected by dietary restriction. Age. 2013;35:1835–1849. doi: 10.1007/s11357-012-9485-8.
    1. Choi K.-M., Kwon Y.-Y., Lee C.-K. Characterization of global gene expression during assurance of lifespan extension by caloric restriction in budding yeast. Exp. Gerontol. 2013;48:1455–1468. doi: 10.1016/j.exger.2013.10.001.
    1. Swindell W.R. Genes and gene expression modules associated with caloric restriction and aging in the laboratory mouse. BMC Genomics. 2009;10:585. doi: 10.1186/1471-2164-10-585.
    1. Plank M., Wuttke D., van Dam S., Clarke S.A., de Magalhães J.P. A meta-analysis of caloric restriction gene expression profiles to infer common signatures and regulatory mechanisms. Mol. Biosyst. 2012;8:1339–1349. doi: 10.1039/c2mb05255e.
    1. Wood S.H., van Dam S., Craig T., Tacutu R., O’Toole A., Merry B.J., de Magalhães J.P. Transcriptome analysis in calorie-restricted rats implicates epigenetic and post-translational mechanisms in neuroprotection and aging. Genome Biol. 2015;16:285. doi: 10.1186/s13059-015-0847-2.
    1. Lee C.K., Klopp R.G., Weindruch R., Prolla T.A. Gene expression profile of aging and its retardation by caloric restriction. Science. 1999;285:1390–1393. doi: 10.1126/science.285.5432.1390.
    1. Whitaker R., Gil M.P., Ding F., Tatar M., Helfand S.L., Neretti N. Dietary switch reveals fast coordinated gene expression changes in Drosophila melanogaster. Aging. 2014;6:355–368. doi: 10.18632/aging.100662.
    1. Kim C.H., Lee E.K., Choi Y.J., An H.J., Jeong H.O., Park D., Kim B.C., Yu B.P., Bhak J., Chung H.Y. Short-term calorie restriction ameliorates genomewide, age-related alterations in DNA methylation. Aging Cell. 2016;15:1074–1081. doi: 10.1111/acel.12513.
    1. Hahn O., Grönke S., Stubbs T.M., Ficz G., Hendrich O., Krueger F., Andrews S., Zhang Q., Wakelam M.J., Beyer A., et al. Dietary restriction protects from age-associated DNA methylation and induces epigenetic reprogramming of lipid metabolism. Genome Biol. 2017;18:56. doi: 10.1186/s13059-017-1187-1.
    1. Sziráki A., Tyshkovskiy A., Gladyshev V.N. Global remodeling of the mouse DNA methylome during aging and in response to calorie restriction. Aging Cell. 2018;17:e12738. doi: 10.1111/acel.12738.
    1. Hadad N., Unnikrishnan A., Jackson J.A., Masser D.R., Otalora L., Stanford D.R., Richardson A., Freeman W.M. Caloric restriction mitigates age-associated hippocampal differential CG and non-CG methylation. Neurobiol. Aging. 2018;67:53–66. doi: 10.1016/j.neurobiolaging.2018.03.009.
    1. Cole J.J., Robertson N.A., Rather M.I., Thomson J.P., McBryan T., Sproul D., Wang T., Brock C., Clark W., Ideker T., et al. Diverse interventions that extend mouse lifespan suppress shared age-associated epigenetic changes at critical gene regulatory regions. Genome Biol. 2017;18:58. doi: 10.1186/s13059-017-1185-3.
    1. Guarasci F., D’Aquila P., Mandalà M., Garasto S., Lattanzio F., Corsonello A., Passarino G., Bellizzi D. Aging and nutrition induce tissue-specific changes on global DNA methylation status in rats. Mech. Ageing Dev. 2018;174:47–54. doi: 10.1016/j.mad.2018.02.001.
    1. Lian T., Gaur U., Wu Q.I., Tu J., Sun B., Yang D., Fan X., Mao X., Yang M. DNA methylation is not involved in dietary restriction induced lifespan extension in adult Drosophila. Genet. Res. 2018;100:e1. doi: 10.1017/S0016672317000064.
    1. Lardenoije R., van den Hove D.L.A., Vaessen T.S.J., Iatrou A., Meuwissen K.P.V., van Hagen B.T.J., Kenis G., Steinbusch H.W.M., Schmitz C., Rutten B.P.F. Epigenetic modifications in mouse cerebellar Purkinje cells: effects of aging, caloric restriction, and overexpression of superoxide dismutase 1 on 5-methylcytosine and 5-hydroxymethylcytosine. Neurobiol. Aging. 2015;36:3079–3089. doi: 10.1016/j.neurobiolaging.2015.08.001.
    1. Wang T., Tsui B., Kreisberg J.F., Robertson N.A., Gross A.M., Yu M.K., Carter H., Brown-Borg H.M., Adams P.D., Ideker T. Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction and rapamycin treatment. Genome Biol. 2017;18:57. doi: 10.1186/s13059-017-1186-2.
    1. Cameron K.M., Miwa S., Walker C., von Zglinicki T. Male mice retain a metabolic memory of improved glucose tolerance induced during adult onset, short-term dietary restriction. Longev. Healthspan. 2012;1:3. doi: 10.1186/2046-2395-1-3.
    1. Selman C., Hempenstall S. Evidence of a metabolic memory to early-life dietary restriction in male C57BL/6 mice. Longev. Healthspan. 2012;1:2. doi: 10.1186/2046-2395-1-2.
    1. Sun L., Sadighi Akha A.A., Miller R.A., Harper J.M. Life-span extension in mice by preweaning food restriction and by methionine restriction in middle age. J. Gerontol. A Biol. Sci. Med. Sci. 2009;64:711–722. doi: 10.1093/gerona/glp051.
    1. Unnikrishnan A., Jackson J., Matyi S.A., Hadad N., Wronowski B., Georgescu C., Garrett K.P., Wren J.D., Freeman W.M., Richardson A. Role of DNA methylation in the dietary restriction mediated cellular memory. Geroscience. 2017;39:331–345. doi: 10.1007/s11357-017-9976-8.
    1. Heijmans B.T., Tobi E.W., Stein A.D., Putter H., Blauw G.J., Susser E.S., Slagboom P.E., Lumey L.H. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl. Acad. Sci. USA. 2008;105:17046–17049. doi: 10.1073/pnas.0806560105.
    1. Bouchard L., Rabasa-Lhoret R., Faraj M., Lavoie M.-E., Mill J., Pérusse L., Vohl M.-C. Differential epigenomic and transcriptomic responses in subcutaneous adipose tissue between low and high responders to caloric restriction. Am. J. Clin. Nutr. 2010;91:309–320. doi: 10.3945/ajcn.2009.28085.
    1. Milagro F.I., Campión J., Cordero P., Goyenechea E., Gómez-Uriz A.M., Abete I., Zulet M.A., Martínez J.A. A dual epigenomic approach for the search of obesity biomarkers: DNA methylation in relation to diet-induced weight loss. FASEB J. 2011;25:1378–1389. doi: 10.1096/fj.10-170365.
    1. Campión J., Milagro F.I., Goyenechea E., Martínez J.A. TNF-alpha promoter methylation as a predictive biomarker for weight-loss response. Obesity. 2009;17:1293–1297.
    1. Lopatina N., Haskell J.F., Andrews L.G., Poole J.C., Saldanha S., Tollefsbol T. Differential maintenance and de novo methylating activity by three DNA methyltransferases in aging and immortalized fibroblasts. J. Cell. Biochem. 2002;84:324–334. doi: 10.1002/jcb.10015.
    1. Ciccarone F., Malavolta M., Calabrese R., Guastafierro T., Bacalini M.G., Reale A., Franceschi C., Capri M., Hervonen A., Hurme M., et al. Age-dependent expression of DNMT1 and DNMT3B in PBMCs from a large European population enrolled in the MARK-AGE study. Aging Cell. 2016;15:755–765. doi: 10.1111/acel.12485.
    1. Li Y., Liu L., Tollefsbol T.O. Glucose restriction can extend normal cell lifespan and impair precancerous cell growth through epigenetic control of hTERT and p16 expression. FASEB J. 2010;24:1442–1453. doi: 10.1096/fj.09-149328.
    1. Chouliaras L., van den Hove D.L.A., Kenis G., Dela Cruz J., Lemmens M.A.M., van Os J., Steinbusch H.W.M., Schmitz C., Rutten B.P.F. Caloric restriction attenuates age-related changes of DNA methyltransferase 3a in mouse hippocampus. Brain Behav. Immun. 2011;25:616–623. doi: 10.1016/j.bbi.2010.11.016.
    1. Huan T., Chen G., Liu C., Bhattacharya A., Rong J., Chen B.H., Seshadri S., Tanriverdi K., Freedman J.E., Larson M.G., et al. Age-associated microRNA expression in human peripheral blood is associated with all-cause mortality and age-related traits. Aging Cell. 2018;17 doi: 10.1111/acel.12687.
    1. Noren Hooten N., Fitzpatrick M., Wood W.H., De S., Ejiogu N., Zhang Y., Mattison J.A., Becker K.G., Zonderman A.B., Evans M.K. Age-related changes in microRNA levels in serum. Aging. 2013;5:725–740. doi: 10.18632/aging.100603.
    1. Smith-Vikos T., Slack F.J. MicroRNAs and their roles in aging. J. Cell. Sci. 2012;125:7–17. doi: 10.1242/jcs.099200.
    1. Inukai S., de Lencastre A., Turner M., Slack F. Novel microRNAs differentially expressed during aging in the mouse brain. PLoS ONE. 2012;7:e40028. doi: 10.1371/journal.pone.0040028.
    1. Khanna A., Muthusamy S., Liang R., Sarojini H., Wang E. Gain of survival signaling by down-regulation of three key miRNAs in brain of calorie-restricted mice. Aging. 2011;3:223–236. doi: 10.18632/aging.100276.
    1. Maalouf M., Rho J.M., Mattson M.P. The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies. Brain Res. Rev. 2009;59:293–315. doi: 10.1016/j.brainresrev.2008.09.002.
    1. Mercken E.M., Majounie E., Ding J., Guo R., Kim J., Bernier M., Mattison J., Cookson M.R., Gorospe M., de Cabo R., et al. Age-associated miRNA alterations in skeletal muscle from rhesus monkeys reversed by caloric restriction. Aging. 2013;5:692–703. doi: 10.18632/aging.100598.
    1. Dhahbi J.M., Spindler S.R., Atamna H., Yamakawa A., Guerrero N., Boffelli D., Mote P., Martin D.I.K. Deep sequencing identifies circulating mouse miRNAs that are functionally implicated in manifestations of aging and responsive to calorie restriction. Aging. 2013;5:130–141. doi: 10.18632/aging.100540.
    1. Bannister A.J., Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21:381–395. doi: 10.1038/cr.2011.22.
    1. Zhao Y., Garcia B.A. Comprehensive Catalog of Currently Documented Histone Modifications. Cold Spring Harb. Perspect. Biol. 2015;7:a025064. doi: 10.1101/cshperspect.a025064.
    1. Wang Y., Yuan Q., Xie L. Histone Modifications in Aging: The Underlying Mechanisms and Implications. Curr. Stem Cell Res. Ther. 2018;13:125–135. doi: 10.2174/1574888X12666170817141921.
    1. Longo V.D., Kennedy B.K. Sirtuins in aging and age-related disease. Cell. 2006;126:257–268. doi: 10.1016/j.cell.2006.07.002.
    1. Grabowska W., Sikora E., Bielak-Zmijewska A. Sirtuins, a promising target in slowing down the ageing process. Biogerontology. 2017;18:447–476. doi: 10.1007/s10522-017-9685-9.
    1. Cohen H.Y., Miller C., Bitterman K.J., Wall N.R., Hekking B., Kessler B., Howitz K.T., Gorospe M., de Cabo R., Sinclair D.A. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science. 2004;305:390–392. doi: 10.1126/science.1099196.
    1. Nemoto S., Fergusson M.M., Finkel T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science. 2004;306:2105–2108. doi: 10.1126/science.1101731.
    1. Lin S.J., Defossez P.A., Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science. 2000;289:2126–2128. doi: 10.1126/science.289.5487.2126.
    1. Li Y., Tollefsbol T.O. p16(INK4a) suppression by glucose restriction contributes to human cellular lifespan extension through SIRT1-mediated epigenetic and genetic mechanisms. PLoS ONE. 2011;6:e17421.
    1. Ressler S., Bartkova J., Niederegger H., Bartek J., Scharffetter-Kochanek K., Jansen-Dürr P., Wlaschek M. p16INK4A is a robust in vivo biomarker of cellular aging in human skin. Aging Cell. 2006;5:379–389. doi: 10.1111/j.1474-9726.2006.00231.x.
    1. Chouliaras L., van den Hove D.L.A., Kenis G., van Draanen M., Hof P.R., van Os J., Steinbusch H.W.M., Schmitz C., Rutten B.P.F. Histone deacetylase 2 in the mouse hippocampus: attenuation of age-related increase by caloric restriction. Curr. Alzheimer Res. 2013;10:868–876. doi: 10.2174/1567205011310080009.
    1. Molina-Serrano D., Schiza V., Demosthenous C., Stavrou E., Oppelt J., Kyriakou D., Liu W., Zisser G., Bergler H., Dang W., et al. Loss of Nat4 and its associated histone H4 N-terminal acetylation mediates calorie restriction-induced longevity. EMBO Rep. 2016;17:1829–1843. doi: 10.15252/embr.201642540.
    1. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14:R115. doi: 10.1186/gb-2013-14-10-r115.
    1. Hannum G., Guinney J., Zhao L., Zhang L., Hughes G., Sadda S., Klotzle B., Bibikova M., Fan J.-B., Gao Y., et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell. 2013;49:359–367. doi: 10.1016/j.molcel.2012.10.016.
    1. Horvath S., Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 2018 doi: 10.1038/s41576-018-0004-3.
    1. Field A.E., Robertson N.A., Wang T., Havas A., Ideker T., Adams P.D. DNA Methylation Clocks in Aging: Categories, Causes, and Consequences. Mol. Cell. 2018;71:882–895. doi: 10.1016/j.molcel.2018.08.008.
    1. Jylhävä J., Pedersen N.L., Hägg S. Biological Age Predictors. EBioMedicine. 2017;21:29–36. doi: 10.1016/j.ebiom.2017.03.046.
    1. Maierhofer A., Flunkert J., Oshima J., Martin G.M., Haaf T., Horvath S. Accelerated epigenetic aging in Werner syndrome. Aging. 2017;9:1143–1152. doi: 10.18632/aging.101217.
    1. Horvath S., Oshima J., Martin G.M., Lu A.T., Quach A., Cohen H., Felton S., Matsuyama M., Lowe D., Kabacik S., et al. Epigenetic clock for skin and blood cells applied to Hutchinson Gilford Progeria Syndrome and ex vivo studies. Aging. 2018;10:1758–1775. doi: 10.18632/aging.101508.
    1. Marioni R.E., Shah S., McRae A.F., Chen B.H., Colicino E., Harris S.E., Gibson J., Henders A.K., Redmond P., Cox S.R., et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 2015;16:25. doi: 10.1186/s13059-015-0584-6.
    1. Breitling L.P., Saum K.-U., Perna L., Schöttker B., Holleczek B., Brenner H. Frailty is associated with the epigenetic clock but not with telomere length in a German cohort. Clin. Epigenetics. 2016;8:21. doi: 10.1186/s13148-016-0186-5.
    1. Gale C.R., Marioni R.E., Harris S.E., Starr J.M., Deary I.J. DNA methylation and the epigenetic clock in relation to physical frailty in older people: the Lothian Birth Cohort 1936. Clin. Epigenetics. 2018;10:101. doi: 10.1186/s13148-018-0538-4.
    1. Chen B.H., Marioni R.E., Colicino E., Peters M.J., Ward-Caviness C.K., Tsai P.-C., Roetker N.S., Just A.C., Demerath E.W., Guan W., et al. DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging. 2016;8:1844–1865. doi: 10.18632/aging.101020.
    1. Christiansen L., Lenart A., Tan Q., Vaupel J.W., Aviv A., McGue M., Christensen K. DNA methylation age is associated with mortality in a longitudinal Danish twin study. Aging Cell. 2016;15:149–154. doi: 10.1111/acel.12421.
    1. Perna L., Zhang Y., Mons U., Holleczek B., Saum K.-U., Brenner H. Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort. Clin. Epigenetics. 2016;8:64. doi: 10.1186/s13148-016-0228-z.
    1. Horvath S., Erhart W., Brosch M., Ammerpohl O., von Schönfels W., Ahrens M., Heits N., Bell J.T., Tsai P.-C., Spector T.D., et al. Obesity accelerates epigenetic aging of human liver. Proc. Natl. Acad. Sci. USA. 2014;111:15538–15543. doi: 10.1073/pnas.1412759111.
    1. Nevalainen T., Kananen L., Marttila S., Jylhävä J., Mononen N., Kähönen M., Raitakari O.T., Hervonen A., Jylhä M., Lehtimäki T., et al. Obesity accelerates epigenetic aging in middle-aged but not in elderly individuals. Clin. Epigenetics. 2017;9:20. doi: 10.1186/s13148-016-0301-7.
    1. Quach A., Levine M.E., Tanaka T., Lu A.T., Chen B.H., Ferrucci L., Ritz B., Bandinelli S., Neuhouser M.L., Beasley J.M., et al. Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging. 2017;9:419–446. doi: 10.18632/aging.101168.
    1. Sumner J.A., Colich N.L., Uddin M., Armstrong D., McLaughlin K.A. Early Experiences of Threat, but Not Deprivation, Are Associated with Accelerated Biological Aging in Children and Adolescents. Biol. Psychiatry. 2019;85:268–278. doi: 10.1016/j.biopsych.2018.09.008.
    1. Jovanovic T., Vance L.A., Cross D., Knight A.K., Kilaru V., Michopoulos V., Klengel T., Smith A.K. Exposure to Violence Accelerates Epigenetic Aging in Children. Sci. Rep. 2017;7:8962. doi: 10.1038/s41598-017-09235-9.
    1. Fiorito G., Polidoro S., Dugué P.-A., Kivimaki M., Ponzi E., Matullo G., Guarrera S., Assumma M.B., Georgiadis P., Kyrtopoulos S.A., et al. Social adversity and epigenetic aging: a multi-cohort study on socioeconomic differences in peripheral blood DNA methylation. Sci. Rep. 2017;7:16266. doi: 10.1038/s41598-017-16391-5.
    1. Li J., Zhu X., Yu K., Jiang H., Zhang Y., Wang B., Liu X., Deng S., Hu J., Deng Q., et al. Exposure to Polycyclic Aromatic Hydrocarbons and Accelerated DNA Methylation Aging. Environ. Health Perspect. 2018;126:067005. doi: 10.1289/EHP2773.
    1. Levine M.E., Lu A.T., Quach A., Chen B.H., Assimes T.L., Bandinelli S., Hou L., Baccarelli A.A., Stewart J.D., Li Y., et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging. 2018;10:573–591. doi: 10.18632/aging.101414.
    1. Stubbs T.M., Bonder M.J., Stark A.-K., Krueger F., BI Ageing Clock Team. von Meyenn F., Stegle O., Reik W. Multi-tissue DNA methylation age predictor in mouse. Genome Biol. 2017;18:68. doi: 10.1186/s13059-017-1203-5.
    1. Meer M.V., Podolskiy D.I., Tyshkovskiy A., Gladyshev V.N. A whole lifespan mouse multi-tissue DNA methylation clock. Elife. 2018;7 doi: 10.7554/eLife.40675.
    1. Thompson M.J., Chwiałkowska K., Rubbi L., Lusis A.J., Davis R.C., Srivastava A., Korstanje R., Churchill G.A., Horvath S., Pellegrini M. A multi-tissue full lifespan epigenetic clock for mice. Aging. 2018;10:2832–2854. doi: 10.18632/aging.101590.
    1. Petkovich D.A., Podolskiy D.I., Lobanov A.V., Lee S.-G., Miller R.A., Gladyshev V.N. Using DNA Methylation Profiling to Evaluate Biological Age and Longevity Interventions. Cell Metab. 2017;25:954–960.e6. doi: 10.1016/j.cmet.2017.03.016.
    1. Thompson M.J., vonHoldt B., Horvath S., Pellegrini M. An epigenetic aging clock for dogs and wolves. Aging. 2017;9:1055–1068. doi: 10.18632/aging.101211.
    1. Polanowski A.M., Robbins J., Chandler D., Jarman S.N. Epigenetic estimation of age in humpback whales. Mol. Ecol. Resour. 2014;14:976–987. doi: 10.1111/1755-0998.12247.
    1. Jelinek J., Madzo J. DREAM: A Simple Method for DNA Methylation Profiling by High-throughput Sequencing. Methods Mol. Biol. 2016;1465:111–127.
    1. Cannon M.V., Buchner D.A., Hester J., Miller H., Sehayek E., Nadeau J.H., Serre D. Maternal nutrition induces pervasive gene expression changes but no detectable DNA methylation differences in the liver of adult offspring. PLoS ONE. 2014;9:e90335. doi: 10.1371/journal.pone.0090335.
    1. Longo V.D., Mattson M.P. Fasting: molecular mechanisms and clinical applications. Cell Metab. 2014;19:181–192. doi: 10.1016/j.cmet.2013.12.008.
    1. Longo V.D., Antebi A., Bartke A., Barzilai N., Brown-Borg H.M., Caruso C., Curiel T.J., de Cabo R., Franceschi C., Gems D., et al. Interventions to Slow Aging in Humans: Are We Ready? Aging Cell. 2015;14:497–510. doi: 10.1111/acel.12338.
    1. Longo V.D., Panda S. Fasting, Circadian Rhythms, and Time-Restricted Feeding in Healthy Lifespan. Cell Metab. 2016;23:1048–1059. doi: 10.1016/j.cmet.2016.06.001.
    1. Mattson M.P., Longo V.D., Harvie M. Impact of intermittent fasting on health and disease processes. Ageing Res. Rev. 2017;39:46–58. doi: 10.1016/j.arr.2016.10.005.

Source: PubMed

3
Subscribe