Mind-Body Activity Program for Chronic Pain: Exploring Mechanisms of Improvement in Patient-Reported, Performance-Based and Ambulatory Physical Function

Jonathan Greenberg, Ryan A Mace, Sarah M Bannon, Ronald J Kulich, Ana-Maria Vranceanu, Jonathan Greenberg, Ryan A Mace, Sarah M Bannon, Ronald J Kulich, Ana-Maria Vranceanu

Abstract

Background: Improving physical function among patients with chronic pain is critical for reducing disability and healthcare costs. However, mechanisms underlying improvement in patient-reported, performance-based, and ambulatory physical function in chronic pain remain poorly understood.

Purpose: To explore psychosocial mediators of improvement in patient-reported, performance-based, and objective/accelerometer-measured physical function among participants in a mind-body activity program.

Methods: Individuals with chronic pain were randomized to one of two identical 10-week mind-body activity interventions aimed at improving physical function with (GetActive-Fitbit; N=41) or without (GetActive; N=41) a Fitbit device. They completed self-reported (WHODAS 2.0), performance-based (6-minute walk test), and objective (accelerometer-measured step-count) measures of physical function, as well as measures of kinesiophobia (Tampa Kinesiophobia Scale), mindfulness (CAMS-R), and pain resilience (Pain Resilience Scale) before and after the intervention. We conducted secondary data analyses to test mediation via mixed-effects modeline.

Results: Improvements in patient-reported physical function were fully and uniquely mediated by kinesiophobia (Completely Standardized Indirect Effect (CSIE)=.18; CI=0.08, 0.30; medium-large effect size), mindfulness (CSIE=-.14; CI=-25, -.05; medium effect size) and pain resilience (CSIE=-.07; CI=-.16, -.005; small-medium effect size). Improvements in performance-based physical function were mediated only by kinesiophobia (CSIE=-.11; CI=-23, -.008; medium effect size). No measures mediated improvements in objective (accelerometer measured) physical function.

Conclusion: Interventions aiming to improve patient-reported physical function in patients with chronic pain may benefit from skills that target kinesiophobia, mindfulness, and pain resilience, while those focused on improving performance-based physical function should target primarily kinesiophobia. More research is needed to understand mechanisms of improvement in objective, accelerometer-measured physical function.

Trial registration: ClinicalTrials.gov NCT03412916.

Keywords: chronic pain; disability; mediation; mind-body; physical function; psychosocial variables.

Conflict of interest statement

The authors report no conflicts of interest in this work.

© 2021 Greenberg et al.

Figures

Figure 1
Figure 1
Multiple mediation model testing the effect of hypothesized mechanisms of change on patient-reported physical function.
Figure 2
Figure 2
Multiple mediation model testing the effect of hypothesized mechanisms of change on performance-based physical function.

References

    1. Jackson W, Zale EL, Berman SJ, et al. Physical functioning and mindfulness skills training in chronic pain: A systematic review. J Pain Res. 2019;12:179–189. doi:10.2147/JPR.S172733
    1. Pincus T, Burton AK, Vogel S, Field AP. A systematic review of psychological factors as predictors of chronicity/disability in prospective cohorts of low back pain. Spine. 2002;27:5. doi:10.1097/00007632-200203010-00017
    1. La Cour P, Petersen M. Effects of mindfulness meditation on chronic pain: a randomized controlled trial. Pain Med. 2015;16(4):641–652. doi:10.1111/pme.12605
    1. Thorn BE, Eyer JC, Van Dyke BP, et al. Literacy-adapted cognitive behavioral therapy versus education for chronic pain at low-income clinics a randomized controlled trial. Ann Intern Med. 2018;168(7):471–480. doi:10.7326/M17-0972
    1. Tarvonen-Schröder S, Kaljonen A, Laimi K. Comparing functioning in spinal cord injury and in chronic spinal pain with two ICF-based instruments: WHODAS 2.0 and the WHO minimal generic data set covering functioning and health. Clin Rehabil. 2019;33(7):1241–1251. doi:10.1177/0269215519839104
    1. Goverover Y, Kalmar J, Gaudino-Goering E, et al. The relation between subjective and objective measures of everyday life activities in persons with multiple sclerosis. Arch Phys Med Rehabil. 2005;86(12):2303–2308. doi:10.1016/j.apmr.2005.05.016
    1. Taylor AM, Phillips K, Patel KV, et al. Assessment of physical function and participation in chronic pain clinical trials: IMMPACT/OMERACT recommendations. Pain. 2016;157(9):1836–1850. doi:10.1097/j.pain.0000000000000577
    1. World Health Organization. International Classification of Functioning, Disability and Health (ICF); 2001.
    1. Greenberg J, Popok PJ, Lin A, et al. A mind-body physical activity program for chronic pain with or without a digital monitoring device: proof-of-concept feasibility randomized controlled trial. JMIR Form Res. 2020;4(6):e18703. doi:10.2196/18703
    1. Greenberg J, Lin A, Zale EL, et al. Development and early feasibility testing of a mind-body physical activity program for patients with heterogeneous chronic pain; the getactive study. J Pain Res. 2019;12:3279–3297. doi:10.2147/JPR.S222448
    1. Fedoroff IC, Blackwell E, Speed B. Evaluation of group and individual change in a multidisciplinary pain management program. Clin J Pain. 2014;30(5):399–408. doi:10.1097/AJP.0b013e31829ea1f7
    1. Woby SR, Roach NK, Urmston M, Watson PJ. Psychometric properties of the TSK-11: A shortened version of the Tampa Scale for Kinesiophobia. Pain. 2005;117(1–2):137–144. doi:10.1016/j.pain.2005.05.029
    1. Liu X, Wang S, Chang S, Chen W, Si M. Effect of brief mindfulness intervention on tolerance and distress of pain induced by cold-pressor task. Stress Heal. 2013;29(3):199–204. doi:10.1002/smi.2446
    1. Goubert L, Trompetter H. Towards a science and practice of resilience in the face of pain. Eur J Pain. 2017;21(8):1301–1315. doi:10.1002/ejp.1062
    1. Norte GE, Solaas H, Saliba SA, Goetschius J, Slater LV, Hart JM. The relationships between kinesiophobia and clinical outcomes after ACL reconstruction differ by self-reported physical activity engagement. Phys Ther Sport. 2019;40:1–9. doi:10.1016/j.ptsp.2019.08.002
    1. Garland EL, Froeliger B, Howard MO. Effects of mindfulness-oriented recovery enhancement on reward responsiveness and opioid cue-reactivity. Psychopharmacology. 2014;231(16):3229–3238. doi:10.1007/s00213-014-3504-7
    1. Alschuler KN, Kratz AL, Ehde DM. Resilience and vulnerability in individuals with chronic pain and physical disability. Rehabil Psychol. 2016;61(1):7–18. doi:10.1037/rep0000055
    1. Alschuler KN, Hoodin F, Murphy SL, Geisser ME. Ambulatory monitoring as a measure of disability in chronic low back pain populations. Clin J Pain. 2011;27(8):707–715. doi:10.1097/AJP.0b013e318217b7d0
    1. Carvalho FA, Maher CG, Franco MR, et al. Fear of movement is not associated with objective and subjective physical activity levels in chronic nonspecific low back pain. Arch Phys Med Rehabil. 2017;98(1):96–104. doi:10.1016/j.apmr.2016.09.115
    1. Greenberg J, Mace RA, Popok PJ, et al. Psychosocial correlates of objective, performance-based, and patient-reported physical function among patients with heterogeneous chronic pain. J Pain Res. 2020;13:2255–2265. doi:10.2147/JPR.S266455
    1. Gewandter JS, Dworkin RH, Turk DC, et al. Improving study conduct and data quality in clinical trials of chronic pain treatments: IMMPACT recommendations. J Pain. 2019. doi:10.1016/j.jpain.2019.12.003
    1. World Health Organization. Whodas 2.0. Assessment. 2010.
    1. Redelmeier DA, Bayoumi AM, Goldstein RS, Guyatt GH. Interpreting small differences in functional status: the six minute walk test in chronic lung disease patients. Am J Respir Crit Care Med. 1997;155(4):1278–1282. doi:10.1164/ajrccm.155.4.9105067
    1. Cain KL, Conway TL, Adams MA, Husak LE, Sallis JF. Comparison of older and newer generations of ActiGraph accelerometers with the normal filter and the low frequency extension. Int J Behav Nutr Phys Act. 2013;10. doi:10.1186/1479-5868-10-51
    1. Smith BW, Dalen J, Wiggins K, Tooley E, Christopher P, Bernard J. The brief resilience scale: assessing the ability to bounce back. Int J Behav Med. 2008;15(3):194–200. doi:10.1080/10705500802222972
    1. Feldman G, Hayes A, Kumar S, Greeson J, Laurenceau JP. Mindfulness and emotion regulation: the development and initial validation of the Cognitive and Affective Mindfulness Scale-Revised (CAMS-R). J Psychopathol Behav Assess. 2007;29(3):177–190. doi:10.1007/s10862-006-9035-8
    1. Sullivan MJL, Bishop SR, Pivik J. The pain catastrophizing scale: development and validation. Psychol Assess. 1995;7(4):524–532. doi:10.1037/1040-3590.7.4.524
    1. Carver CS. MOCS (Measure of Current Status); Published 2006. Available from: . Accessed June19, 2019.
    1. Odole A, Ekediegwu E, Ekechukwu END, Uchenwoke C. Correlates and predictors of pain intensity and physical function among individuals with chronic knee osteoarthritis in Nigeria. Musculoskelet Sci Pract. 2019;39:150–156. doi:10.1016/j.msksp.2018.11.014
    1. Gu H. A mixed model approach for intent-to-treat analysis in longitudinal clinical trials with missing values. Methods Report. doi:10.3768/rtipress.2009.mr.0009.0903
    1. Tofighi D, MacKinnon DP. RMediation: an R package for mediation analysis confidence intervals. Behav Res Methods. 2011;43(3):692–700. doi:10.3758/s13428-011-0076-x
    1. R Development Core Team. R: A language and environment for statistical computing. R Found Stat Comput. 2019. doi:10.1017/CBO9781107415324.004
    1. Preacher KJ, Selig JP. Advantages of monte carlo confidence intervals for indirect effects. Commun Methods Meas. 2012;6(2):77–98. doi:10.1080/19312458.2012.679848
    1. Preacher KJ, Hayes AF. Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav Res Methods. 2008;40(3):879–891. doi:10.3758/BRM.40.3.879
    1. Zhao X, Lynch JG, Chen Q. Reconsidering Baron and Kenny: myths and truths about mediation analysis. J Consum Res. 2010;37(2):197–206. doi:10.1086/651257
    1. O’Rourke HP, Mackinnon DP. Reasons for testing mediation in the absence of an intervention effect: A research imperative in prevention and intervention research. J Stud Alcohol Drugs. 2018;79(2):171–181. doi:10.15288/jsad.2018.79.171
    1. O’Rourke HP, MacKinnon DP. When the test of mediation is more powerful than the test of the total effect. Behav Res Methods. 2015;47(2):424–442. doi:10.3758/s13428-014-0481-z
    1. MacKinnon D. Introduction to Statistical Mediation Analysis. New York: Erlbaum and Taylor Francis Group; 2008.
    1. Preacher KJ, Kelley K. Effect size measures for mediation models: quantitative strategies for communicating indirect effects. Psychol Methods. 2011;16(2):93–115. doi:10.1037/a0022658
    1. Tudor-Locke C, Craig CL, Thyfault JP, Spence JC. A step-defined sedentary lifestyle index: <5000 steps/day. Appl Physiol Nutr Metab. 2013;38(2):100–114. doi:10.1139/apnm-2012-0235
    1. Pankoff BA, Overend TJ, Lucy SD, White KP. Reliability of the six-minute walk test in people with fibromyalgia. Arthritis Rheum. 2000;13(5):291–295. doi:10.1002/1529-0131(200010)13:5<291::aid-anr8>;2-x
    1. Silva C, Coleta I, Silva AG, et al. Adaptation and validation of whodas 2.0 in patients with musculoskeletal pain. Rev Saude Publica. 2013;47:4. doi:10.1590/S0034-8910.2013047004374
    1. Slepian PM, Ankawi B, Himawan LK, France CR. Development and initial validation of the pain resilience scale. J Pain. 2016;17(4):462–472. doi:10.1016/j.jpain.2015.12.010
    1. Conway J, Tomkins CC, Haig AJ. Walking assessment in people with lumbar spinal stenosis: capacity, performance, and self-report measures. Spine J. 2011;11(9):816–823. doi:10.1016/j.spinee.2010.10.019
    1. Maxwell SE, Cole DA. Bias in cross-sectional analyses of longitudinal mediation. Psychol Methods. 2007;12(1):23–44. doi:10.1037/1082-989X.12.1.23
    1. Goldsmith KA, MacKinnon DP, Chalder T, White PD, Sharpe M, Pickles A. Tutorial: the practical application of longitudinal structural equation mediation models in clinical trials. Psychol Methods. 2018;23(2):191–207. doi:10.1037/met0000154

Source: PubMed

3
Subscribe