Psychosocial Correlates of Objective, Performance-Based, and Patient-Reported Physical Function Among Patients with Heterogeneous Chronic Pain

Jonathan Greenberg, Ryan A Mace, Paula J Popok, Ronald J Kulich, Kushang V Patel, John W Burns, Tamara J Somers, Francis J Keefe, Michael E Schatman, Ana-Maria Vranceanu, Jonathan Greenberg, Ryan A Mace, Paula J Popok, Ronald J Kulich, Kushang V Patel, John W Burns, Tamara J Somers, Francis J Keefe, Michael E Schatman, Ana-Maria Vranceanu

Abstract

Background: Improving all aspects of physical function is an important goal of chronic pain management. Few studies follow recent guidelines to comprehensively assess physical function via patient-reported, performance-based, and objective/ambulatory measures.

Purpose: To test 1) the interrelation between the 3 types of physical function measurement and 2) the association between psychosocial factors and each type of physical function measurement.

Methods: Patients with chronic pain (N=79) completed measures of: 1) physical function (patient-reported disability; performance-based 6-minute walk-test; objective accelerometer step count); 2) pain and non-adaptive coping (pain during rest and activity, pain-catastrophizing, kinesiophobia); 3) adaptive coping (mindfulness, general coping, pain-resilience); and 4) social-emotional dysfunction (anxiety, depression, social isolation and emotional support). First, we tested the interrelation among the 3 aspects of physical function. Second, we used structural equation modeling to test associations between psychosocial factors (pain and non-adaptive coping, adaptive coping, and social-emotional dysfunction) and each measurement of physical function.

Results: Performance-based and objective physical function were significantly interrelated (r=0.48, p<0.001) but did not correlate with patient-reported disability. Pain and non-adaptive coping (β=0.68, p<0.001), adaptive coping (β=-0.65, p<0.001) and social-emotional dysfunction (β=0.65, p<0.001) were associated with patient-reported disability but not to performance-based or objective physical function (ps>0.1).

Conclusion: Results suggest that patient-reported physical function may provide limited information about patients' physical capacity or ambulatory activity. While pain and non-adaptive reactions to it, adaptive coping, and social-emotional dysfunction may potentially improve patient-reported physical function, additional targets may be needed to improve functional capacity and ambulatory activity.

Trial registration: ClinicalTrials.gov NCT03412916.

Keywords: accelerometer; chronic pain; physical function; psychosocial factors; six-minute walk test.

Conflict of interest statement

The authors declare that they have no conflicts of interest.

© 2020 Greenberg et al.

Figures

Figure 1
Figure 1
SEM model.

References

    1. Phillips CJ. The cost and burden of chronic pain. Rev Pain. 2009;3(1):2–5. doi:10.1177/204946370900300102
    1. Turk DC, Dworkin RH, Revicki D, et al. Identifying important outcome domains for chronic pain clinical trials: an IMMPACT survey of people with pain. Pain. 2008;137(2):276–285. doi:10.1016/j.pain.2007.09.002
    1. Poulin PA, Romanow HC, Rahbari N, et al. The relationship between mindfulness, pain intensity, pain catastrophizing, depression, and quality of life among cancer survivors living with chronic neuropathic pain. Support Care Cancer. 2016;24(10):4167–4175. doi:10.1007/s00520-016-3243-x
    1. Dowell D, Haegerich TM, Chou R. CDC guideline for prescribing opioids for chronic pain-United States, 2016. JAMA. 2016;315(15):1624–1645. doi:10.1001/jama.2016.1464
    1. Jackson W, Kulich R, Malacarne A, Lapidow A, Vranceanu A. (497) Physical functioning and mindfulness based interventions in chronic pain: a systematic review. J Pain. 2016;17(4):S99. doi:10.1016/j.jpain.2016.01.304
    1. Rodríguez-Blázquez C, Damián J, Andrés-Prado MJ, et al. Associations between chronic conditions, body functions, activity limitations and participation restrictions: a cross-sectional approach in Spanish non-clinical populations. BMJ Open. 2016;6(6):e010446. doi:10.1136/bmjopen-2015-010446
    1. Tarvonen-Schröder S, Kaljonen A, Laimi K. Comparing functioning in spinal cord injury and in chronic spinal pain with two ICF-based instruments: WHODAS 2.0 and the WHO minimal generic data set covering functioning and health. Clin Rehabil. 2019;33(7):1241–1251. doi:10.1177/0269215519839104
    1. Taylor AM, Phillips K, Patel KV, et al. Assessment of physical function and participation in chronic pain clinical trials: IMMPACT/OMERACT recommendations. Pain. 2016;157:1836–1850. doi:10.1097/j.pain.0000000000000577
    1. Gewandter JS, Dworkin RH, Turk DC, et al. Improving study conduct and data quality in clinical trials of chronic pain treatments: IMMPACT recommendations. J Pain. 2019. doi:10.1016/j.jpain.2019.12.003
    1. World Health Organization. International Classification of Functioning, Disability and Health (ICF). Geneva; 2001.
    1. Smuck M, Tomkins-Lane C, Ith MA, Jarosz R, Kao MCJ. Physical performance analysis: a new approach to assessing free-living physical activity in musculoskeletal pain and mobility-limited populations. PLoS One. 2017;12(2):e0172804. doi:10.1371/journal.pone.0172804
    1. Huijnen IPJ, Verbunt JA, Peters ML, et al. Do depression and pain intensity interfere with physical activity in daily life in patients with chronic low back pain? Pain. 2010;150(1):161–166. doi:10.1016/j.pain.2010.04.021
    1. Pryce R, Johnson M, Goytan M, Passmore S, Berrington N, Kriellaars D. Relationship between ambulatory performance and self-rated disability in patients with lumbar spinal stenosis. Spine (Phila Pa 1976). 2012;37(15):1316–1323. doi:10.1097/BRS.0b013e31824a8314
    1. Vanbuskirk K, Roesch S, Afari N, Wetherell JL. Physical activity of patients with chronic pain receiving acceptance and commitment therapy or cognitive behavioural therapy. Behav Chang. 2014;31(2):131–143. doi:10.1017/bec.2014.6
    1. Wideman TH, Finan PH, Edwards RR, et al. Increased sensitivity to physical activity among individuals with knee osteoarthritis: relation to pain outcomes, psychological factors, and responses to quantitative sensory testing. Pain. 2014;155(4):703–711. doi:10.1016/j.pain.2013.12.028
    1. Dunlop DD, Song J, Semanik PA, Sharma L, Chang RW. Physical activity levels and functional performance in the osteoarthritis initiative: a graded relationship. Arthritis Rheum. 2011;63(1):127–136. doi:10.1002/art.27760
    1. Terwee CB, van der Slikke RMA, van Lummel RC, Benink RJ, Meijers WGH, de Vet HCW. Self-reported physical functioning was more influenced by pain than performance-based physical functioning in knee-osteoarthritis patients. J Clin Epidemiol. 2006;59(7):724–731. doi:10.1016/j.jclinepi.2005.11.019
    1. Guildford BJ, Jacobs CM, Daly-Eichenhardt A, Scott W, McCracken LM. Assessing physical functioning on pain management programmes: the unique contribution of directly assessed physical performance measures and their relationship to self-reports. Br J Pain. 2017;11(1):46–57. doi:10.1177/2049463716680559
    1. Terrier P, Le Carre J, Connaissa ML, Leger B, Luthi F. Monitoring of gait quality in patients with chronic pain of lower limbs. IEEE Trans Neural Syst Rehabil Eng. 2017;25(10):1843–1852. doi:10.1109/TNSRE.2017.2688485
    1. Feinglass J, Song J, Semanik P, et al. Association of functional status with changes in physical activity: insights from a behavioral intervention for participants with arthritis. Arch Phys Med Rehabil. 2012;93(1):172–175. doi:10.1016/j.apmr.2011.06.037
    1. Alschuler KN, Hoodin F, Murphy SL, Geisser ME. Ambulatory monitoring as a measure of disability in chronic low back pain populations. Clin J Pain. 2011;27(8):707–715. doi:10.1097/AJP.0b013e318217b7d0
    1. Conway J, Tomkins CC, Haig AJ. Walking assessment in people with lumbar spinal stenosis: capacity, performance, and self-report measures. Spine J. 2011;11(9):816–823. doi:10.1016/j.spinee.2010.10.019
    1. Sander L, Paganini S, Lin J, et al. Effectiveness and cost-effectiveness of a guided Internet- and mobile-based intervention for the indicated prevention of major depression in patients with chronic back pain-study protocol of the PROD-BP multicenter pragmatic RCT. BMC Psychiatry. 2017;17(1). doi:10.1186/s12888-017-1193-6
    1. Wertli MM, Burgstaller JM, Weiser S, Steurer J, Kofmehl R, Held U. Influence of catastrophizing on treatment outcome in patients with nonspecific low back Pain: a systematic review. Spine (Phila Pa 1976). 2014;39:263–273. doi:10.1097/BRS.0000000000000110
    1. Tagliaferri SD, Miller CT, Owen PJ, et al. Domains of chronic low back pain and assessing treatment effectiveness: a clinical perspective. Pain Pract. 2020;20(2):211–225. doi:10.1111/papr.12846
    1. Bergbom S, Boersma K, Overmeer T, Linton SJ. Relationship among pain catastrophizing, depressed mood, and outcomes across physical therapy treatments. Phys Ther. 2011;91(5):754–764. doi:10.2522/ptj.20100136
    1. Igwesi-Chidobe CN, Coker B, Onwasigwe CN, Sorinola IO, Godfrey EL. Biopsychosocial factors associated with chronic low back pain disability in rural Nigeria: a population-based crosssectional study. BMJ Glob Heal. 2017;2(3). doi:10.1136/bmjgh-2017-000284
    1. Tonelli SM, Rakel BA, Cooper NA, Angstom WL, Sluka KA. Women with knee osteoarthritis have more pain and poorer function than men, but similar physical activity prior to total knee replacement. Biol Sex Differ. 2011;2(1):12. doi:10.1186/2042-6410-2-12
    1. Carvalho FA, Maher CG, Franco MR, et al. Fear of movement is not associated with objective and subjective physical activity levels in chronic nonspecific low back pain. Arch Phys Med Rehabil. 2017;98(1):96–104. doi:10.1016/j.apmr.2016.09.115
    1. Janevic M, Kratz A, Piette J, Murphy S. How are fear-avoidance beliefs associated with objectively-measured physical activity level in osteoarthritis patients? J Pain. 2018;19(3):S34. doi:10.1016/j.jpain.2017.12.090
    1. Sharpe L, Jones E, Ashton-James CE, Nicholas MK, Refshauge K. Necessary components of psychological treatment in pain management programs: a Delphi study. Eur J Pain. 2020;24(6):1160–1168. doi:10.1002/ejp.1561
    1. McCracken LM. Necessary components of psychological treatment for chronic pain: more packages for groups or process-based therapy for individuals? Eur J Pain. 2020;24(6):1001–1002. doi:10.1002/ejp.1568
    1. Greenberg J, Lin A, Zale EL, et al. Development and early feasibility testing of a mind-body physical activity program for patients with heterogeneous chronic pain; the GetActive study. J Pain Res. 2019;12:3279–3297. doi:10.2147/JPR.S222448
    1. Greenberg J, Popok PJ, Lin A, et al. A mind-body physical activity program for chronic pain with or without a digital monitoring device: proof-of-concept feasibility randomized controlled trial. JMIR Form Res. 2020;4(6):e18703. doi:10.2196/18703
    1. IASP Taxonomy Working Group. Pain Terms a Current List with Definitions and Notes on Usage; 1986.
    1. American Thoractic Society. ATS statement: the six-minute walk test. Am J Respir Crit Care Med. 2002;166(1):111–117. doi:10.1164/rccm.166/1/111.
    1. Sullivan MJL, Thorn B, Haythornthwaite JA, et al. Theoretical perspectives on the relation between catastrophizing and pain. Clin J Pain. 2001;17(1):52–64. doi:10.1097/00002508-200103000-00008
    1. Moseley GL, Vlaeyen JWS. Beyond nociception: the imprecision hypothesis of chronic pain. Pain. 2015;156:35–38. doi:10.1016/j.pain.0000000000000014
    1. Verhiel SHWL, Greenberg J, Zale EL, Chen NC, Ring DC, Vranceanu AM. What role does positive psychology play in understanding pain intensity and disability among patients with hand and upper extremity conditions? Clin Orthop Relat Res. 2019;477(8):1769–1776. doi:10.1097/CORR.0000000000000694
    1. Flink IK, Smeets E, Bergbom S, Peters ML. Happy despite pain: pilot study of a positive psychology intervention for patients with chronic pain. Scand J Pain. 2015;7:71–79. doi:10.1016/j.sjpain.2015.01.005
    1. Shapero BG, Greenberg J, Pedrelli P, Desbordes G, Lazar SW. Mindfulness-based cognitive therapy In: Shapero BG, Mischoulon D, Cusin C, editors. The Massachusetts General Hospital Guide to Depression. New York, NY: Springer; 2018:167–177.
    1. Shapero BG, Greenberg J, Pedrelli P, de Jong M, Desbordes G. Mindfulness-based interventions in psychiatry. Focus (Madison). 2018;16(1):32–39. doi:10.1176/appi.focus.20170039
    1. Jackson W, Zale EL, Berman SJ, et al. Physical functioning and mindfulness skills training in chronic pain: a systematic review. J Pain Res. 2019;12:179–189. doi:10.2147/JPR.S172733
    1. Weinberger DA, Bartholomew K. Social-emotional adjustment and patterns of alcohol use among young adults. J Pers. 1996;64(2):495–527. doi:10.1111/j.1467-6494.1996.tb00519.x
    1. Riggs NR, Jahromi LB, Razza RP, Dillworth-Bart JE, Mueller U. Executive function and the promotion of social-emotional competence. J Appl Dev Psychol. 2006;27(4):300–309. doi:10.1016/j.appdev.2006.04.002
    1. Elias MJ, O’brien MU, Weissberg RP. Transformative Leadership for Social-Emotional Learning. Princ Leadersh; 2006.
    1. Cain KL, Conway TL, Adams MA, Husak LE, Sallis JF. Comparison of older and newer generations of ActiGraph accelerometers with the normal filter and the low frequency extension. Int J Behav Nutr Phys Act. 2013;10:51. doi:10.1186/1479-5868-10-51
    1. Knuth ND, Chen KM, Schrack JA. Objectively measured physical activity varies by task and accelerometer location in younger and older adults. Med Sci Sport Exerc. 2016;48:1061. doi:10.1249/01.mss.0000488192.95209.a5
    1. Evenson KR, Wen F. Performance of the ActiGraph accelerometer using a national population-based sample of youth and adults. BMC Res Notes. 2015;8(1):7. doi:10.1186/s13104-014-0970-2
    1. Aadland E, Ylvisåker E. Reliability of the actigraph GT3X+ accelerometer in adults under free-living conditions. PLoS One. 2015;10(8):e0134606. doi:10.1371/journal.pone.0134606
    1. Pankoff BA, Overend TJ, Lucy SD, White KP. Reliability of the six-minute walk test in people with fibromyalgia. Arthritis Rheum. 2000;13(5):291–295. doi:10.1002/1529-0131(200010)13:5<291::aid-anr8>;2-x
    1. Wawrzyniak KM, Finkelman M, Schatman ME, et al. The world health organization disability assessment schedule-2.0 (WHODAS 2.0) in a chronic pain population being considered for chronic opioid therapy. J Pain Res. 2019;12:1855–1862. doi:10.2147/JPR.S207870
    1. Farrar JT, Young JP, LaMoreaux L, Werth JL, Poole RM. Clinical importance of changes in chronic pain intensity measured on an 11-point numerical pain rating scale. Pain. 2001;94(2):149–158. doi:10.1016/S0304-3959(01)00349-9
    1. Rodriguez CS. Pain measurement in the elderly: a review. Pain Manag Nurs. 2001;2(2):38–46. doi:10.1053/jpmn.2001.23746
    1. Sullivan MJL, Bishop SR, Pivik J. The pain catastrophizing scale: development and validation. Psychol Assess. 1995;7(4):524–532. doi:10.1037/1040-3590.7.4.524
    1. Woby SR, Roach NK, Urmston M, Watson PJ. Psychometric properties of the TSK-11: a shortened version of the Tampa Scale for Kinesiophobia. Pain. 2005;117(1–2):137–144. doi:10.1016/j.pain.2005.05.029
    1. Carver CS: MOCS (Measure of Current Status). Available from: . Accessed June19, 2019.
    1. Slepian PM, Ankawi B, Himawan LK, France CR. Development and initial validation of the pain resilience scale. J Pain. 2016;17(4):462–472. doi:10.1016/j.jpain.2015.12.010
    1. Feldman G, Hayes A, Kumar S, Greeson J, Laurenceau JP. Mindfulness and emotion regulation: the development and initial validation of the Cognitive and Affective Mindfulness Scale-Revised (CAMS-R). J Psychopathol Behav Assess. 2007;29(3):177–190. doi:10.1007/s10862-006-9035-8
    1. Outcomes Measurement Information System. 2015. A Brief Guide to the PROMIS Anxiety Instruments. Available from: . Accessed July 10, 2020.
    1. A brief guide to the PROMIS depression instruments. Patient Reported Outcomes Measurement Information System. Available from: . Accessed July10, 2020.
    1. A brief guide to the PROMIS Social Isolation instruments. Outcomes Measurement Information System. Available from: . Accessed October29, 2018.
    1. A brief guide to the PROMIS Emotional Support instruments. Outcomes Measurement Information System. Available from: . Accessed October29, 2018.
    1. R Development Core Team. R: a language and environment for statistical computing. R Found Stat Comput. 2019. doi:10.1017/CBO9781107415324.004
    1. Allison PD. Missing data techniques for structural equation modeling. J Abnorm Psychol. 2003;112(4):545–557. doi:10.1037/0021-843X.112.4.545
    1. Curran C, Williams AC, Potts HWW. Cognitive-behavioral therapy for persistent pain: does adherence after treatment affect outcome? Eur J Pain. 2009;13(2):178–188. doi:10.1016/j.ejpain.2008.06.009
    1. Li CH. Confirmatory factor analysis with ordinal data: comparing robust maximum likelihood and diagonally weighted least squares. Behav Res Methods. 2016;48(3):936–949. doi:10.3758/s13428-015-0619-7
    1. Budaev SV. Using principal components and factor analysis in animal behaviour research: caveats and guidelines. Ethology. 2010;116(5):472–480. doi:10.1111/j.1439-0310.2010.01758.x
    1. Rosseel Y. Lavaan: an R package for structural equation modeling. J Stat Softw. 2012;48. doi:10.18637/jss.v048.i02.
    1. Kline RB. Principles and Practice of Structural Equation Modeling. New York: Guilford Press; 1998.
    1. Hooper D, Coughlan J, Mullen M. Structural equation modelling: guidelines for determining model fit. Electron J Bus Res Methods. 2008;6(1):53–59. doi:10.1037/1082-989X.12.1.58
    1. Hu LT, Bentler PM. Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct Equ Model. 1999;6(1):1–55. doi:10.1080/10705519909540118
    1. Bentler PM, Bonett DG. Significance tests and goodness of fit in the analysis of covariance structures. Psychol Bull. 1980;88(3):588–606. doi:10.1037/0033-2909.88.3.588
    1. Browne MW, Cudeck R. Alternative ways of assessing model fit In: Bollen KA, Long JS, editors. Testing Structural Equation Models. Newbury Park, NJ: Sage; 1993:136–162.
    1. Martens MP. The use of structural equation modeling in counseling psychology research. Couns Psychol. 2005;33(3):269–298. doi:10.1177/0011000004272260
    1. Tudor-Locke C, Craig CL, Thyfault JP, Spence JC. A step-defined sedentary lifestyle index: <5000 steps/day. Appl Physiol Nutr Metab. 2013;38(2):100–114. doi:10.1139/apnm-2012-0235
    1. Silva C, Coleta I, Silva AG, et al. Adaptation and validation of WHODAS 2.0 in patients with musculoskeletal pain. Rev Saude Publica. 2013;47(4). doi:10.1590/S0034-8910.2013047004374
    1. Latorre-Román P, Santos-Campos M, Heredia-Jimenez J, Delgado-Fernández M, Soto-Hermoso V. Analysis of the performance of women with Fibromyalgia in the six-Minute Walk Test and its relation with health and quality of life. J Sports Med Phys Fitness. 2014;54:511–517.
    1. Kim JM, Stewart R, Glozier N, et al. Physical health, depression and cognitive function as correlates of disability in an older Korean population. Int J Geriatr Psychiatry. 2005;20(2):160–167. doi:10.1002/gps.1266
    1. Kelly LA, McMillan DGE, Anderson A, Fippinger M, Fillerup G, Rider J. Validity of actigraphs uniaxial and triaxial accelerometers for assessment of physical activity in adults in laboratory conditions. BMC Med Phys. 2013;13(1). doi:10.1186/1756-6649-13-5
    1. Chomistek AK, Yuan C, Matthews CE, et al. Physical Activity Assessment with the ActiGraph GT3X and Doubly Labeled Water. Med Sci Sports Exerc. 2017;49(9):1935–1944. doi:10.1249/MSS.0000000000001299
    1. Chu AHY, Ng SHX, Paknezhad M, et al. Comparison of wrist-worn Fitbit Flex and waist-worn ActiGraph for measuring steps in free-living adults. PLoS One. 2017;12(2):e0172535. doi:10.1371/journal.pone.0172535
    1. Feehan LM, Geldman J, Sayre EC, et al. Accuracy of fitbit devices: systematic review and narrative syntheses of quantitative data. JMIR MHealth UHealth. 2018;6(8):e10527. doi:10.2196/10527
    1. Campbell P, Bishop A, Dunn KM, Main CJ, Thomas E, Foster NE. Conceptual overlap of psychological constructs in low back pain. Pain. 2013;154(9):1783–1791. doi:10.1016/j.pain.2013.05.035

Source: PubMed

3
Subscribe