Pharmacogenetics of analgesic drugs

Roman Cregg, Giovanna Russo, Anthony Gubbay, Ruth Branford, Hiroe Sato, Roman Cregg, Giovanna Russo, Anthony Gubbay, Ruth Branford, Hiroe Sato

Abstract

• Individual variability in pain perception and differences in the efficacy of analgesic drugs are complex phenomena and are partly genetically predetermined. • Analgesics act in various ways on the peripheral and central pain pathways and are regarded as one of the most valuable but equally dangerous groups of medications. • While pharmacokinetic properties of drugs, metabolism in particular, have been scrutinised by genotype-phenotype correlation studies, the clinical significance of inherited variants in genes governing pharmacodynamics of analgesics remains largely unexplored (apart from the µ-opioid receptor). • Lack of replication of the findings from one study to another makes meaningful personalised analgesic regime still a distant future. • This narrative review will focus on findings related to pharmacogenetics of commonly used analgesic medications and highlight authors' views on future clinical implications of pharmacogenetics in the context of pharmacological treatment of chronic pain.

Keywords: Pharmacogenetics; analgesics; genetic association studies; genetic screening; inter-individual variability; metabolism; pain; pain perception; pharmacodynamics; pharmacogenomics; pharmacokinetics; phenotype; polymorphism; single-nucleotide polymorphism.

Conflict of interest statement

Conflict of interest: The authors declare no conflict of interest.

Figures

Figure 1.
Figure 1.
Heritable factors influencing drug–organism interaction. Source: American Society of Anesthesiologists, Inc. (p. 302).
Figure 2.
Figure 2.
Major metabolic pathways for (a) codeine and morphine, (b) oxycodone and (c) tramadol.

References

    1. Kirchheiner J, Schmidt H, Tzvetkov M, et al. Pharmacokinetics of codeine and its metabolite morphine in ultra-rapid metabolizers due to CYP2D6 duplication. Pharmacogenomics J 2007; 7(4): 257–265.
    1. Klepstad P, Rakvåg TT, Kaasa S, et al. The 118 A > G polymorphism in the human mu-opioid receptor gene may increase morphine requirements in patients with pain caused by malignant disease. Acta Anaesthesiol Scand 2004; 48(10): 1232–1239.
    1. Lalovic B, Kharasch E, Hoffer C, et al. Pharmacokinetics and pharmacodynamics of oral oxycodone in healthy human subjects: role of circulating active metabolites. Clin Pharmacol Ther 2006; 79(5): 461–479.
    1. Williams DG, Patel A, Howard RF. Pharmacogenetics of codeine metabolism in an urban population of children and its implications for analgesic reliability. Br J Anaesth 2002; 89(6): 839–845.
    1. Meyer UA. Pharmacogenetics – five decades of therapeutic lessons from genetic diversity. Nat Rev Genet 2004; 5(9): 669–676.
    1. Watson JD, Crick FH. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 1953; 171(4356): 737–738.
    1. Crick F. Central dogma of molecular biology. Nature 1970; 227(5258): 561–563.
    1. Frueh FW, Amur S, Mummaneni P, et al. Pharmacogenomic biomarker information in drug labels approved by the United States food and drug administration: prevalence of related drug use. Pharmacotherapy 2008; 28(8): 992–998.
    1. Li GW, Xie XS. Central dogma at the single-molecule level in living cells. Nature 2011; 475(7356): 308–315.
    1. Passaro E, Jr, Hurwitz M, Samara G, et al. Molecular biology: an overview. Am J Surg 1992; 164(2): 146–152.
    1. Hamosh A, Scott AF, Amberger JS, et al. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 2005; 33(Database issue): D514–D517.
    1. Sherry ST, Ward M, Sirotkin K. dbSNP-database for single nucleotide polymorphisms and other classes of minor genetic variation. Genome Res 1999; 9(8): 677–679.
    1. Han C, Rush AM, Dib-Hajj SD, et al. Sporadic onset of erythermalgia: a gain-of-function mutation in Nav1.7. Ann Neurol 2006; 59(3): 553–558.
    1. Kidd JM, Cooper GM, Donahue WF, et al. Mapping and sequencing of structural variation from eight human genomes. Nature 2008; 453(7191): 56–64.
    1. Zhou SF. Polymorphism of human cytochrome P450 2D6 and its clinical significance: part I. Clin Pharmacokinet 2009; 48(11): 689–723.
    1. Mogil JS, Wilson SG, Bon K, et al. Heritability of nociception II. ‘Types’ of nociception revealed by genetic correlation analysis. Pain 1999; 80(1–2): 83–93.
    1. Mogil JS, Wilson SG, Bon K, et al. Heritability of nociception I: responses of 11 inbred mouse strains on 12 measures of nociception. Pain 1999; 80(1–2): 67–82.
    1. Livshits G, Popham M, Malkin I, et al. Lumbar disc degeneration and genetic factors are the main risk factors for low back pain in women: the UK Twin Spine Study. Ann Rheum Dis 2011; 70(10): 1740–1745.
    1. Williams FM, Spector TD, MacGregor AJ. Pain reporting at different body sites is explained by a single underlying genetic factor. Rheumatology 2010; 49(9): 1753–1755.
    1. Hartvigsen J, Nielsen J, Kyvik KO, et al. Heritability of spinal pain and consequences of spinal pain: a comprehensive genetic epidemiologic analysis using a population-based sample of 15,328 twins ages 20-71 years. Arthritis Rheum 2009; 61(10): 1343–1351.
    1. Norbury TA, MacGregor AJ, Urwin J, et al. Heritability of responses to painful stimuli in women: a Classical Twin Study. Brain 2007; 130(Pt 11): 3041–3049.
    1. Kehlet H, Jensen TS, Woolf CJ. Persistent postsurgical pain: risk factors and prevention. Lancet 2006; 367(9522): 1618–1625.
    1. Mogil JS. Pain genetics: past, present and future. Trends Genet 2012; 28(6): 258–66.
    1. Young EE, Lariviere WR, Belfer I. Genetic basis of pain variability: recent advances. J Med Genet 2012; 49(1): 1–9.
    1. Kim H, Neubert JK, San Miguel A, et al. Genetic influence on variability in human acute experimental pain sensitivity associated with gender, ethnicity and psychological temperament. Pain 2004; 109(3): 488–496.
    1. Aubrun F, Langeron O, Quesnel C, et al. Relationships between measurement of pain using visual analog score and morphine requirements during postoperative intravenous morphine titration. Anesthesiology 2003; 98(6): 1415–1421.
    1. Walker JS, Sheather-Reid RB, Carmody JJ, et al. Nonsteroidal antiinflammatory drugs in rheumatoid arthritis and osteoarthritis: support for the concept of ‘responders’ and ‘nonresponders’. Arthritis Rheum 1997; 40(11): 1944–1954.
    1. MacGregor AJ, Andrew T, Sambrook PN, et al. Structural, psychological, and genetic influences on low back and neck pain: a study of adult female twins. Arthritis Rheum 2004; 51(2): 160–167.
    1. Turk DC, Flor H, Rudy TE. Pain and families. I Etiology, maintenance, and psychosocial impact. Pain 1987; 30(1): 3–27.
    1. Foulkes T, Wood JN. Pain genes. PLoS Genet 2008; 4(7): e1000086.
    1. Auer-Grumbach M, Mauko B, Auer-Grumbach P, et al. Molecular genetics of hereditary sensory neuropathies. Neuromolecular Med 2006; 8(1–2): 147–158.
    1. Cox J, Reimann F, Nicholas AK, et al. An SCN9A channelopathy causes congenital inability to experience pain. Nature 2006; 444(7121): 894–898.
    1. Yang Y, Wang Y, Li S, et al. Mutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia. J Med Genet 2004; 41(3): 171–174.
    1. Fertleman CR, Baker MD, Parker KA, et al. SCN9A mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes. Neuron 2006; 52(5): 767–774.
    1. Faber CG, Hoeijmakers JG, Ahn HS, et al. Gain of function Nav1.7 mutations in idiopathic small fiber neuropathy. Ann Neurol 2012; 71(1): 26–39.
    1. Lampert A, O’Reilly AO, Reeh P, et al. Sodium channelopathies and pain. Pflugers Arch 2010; 460(2): 249–263.
    1. Kremyer B, Lopera F, Cox JJ, et al. A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome (FEPS). Neuron 2010; 66(5): 671–680.
    1. Einarsdottir E, Carlsson A, Minde J, et al. A mutation in the nerve growth factor beta gene (NGFB) causes loss of pain perception. Hum Mol Genet 2004; 13(8): 799–805.
    1. American Society of Anesthesiologists, Inc. 58th annual refresher course lectures and basic science reviews, 1st edn Park Ridge, IL: American Society of Anesthesiologists, Inc, 2007, 515 pp.
    1. Caraceni A, Hanks G, Kaasa S, et al. Use of opioid analgesics in the treatment of cancer pain: evidence-based recommendations from the EAPC. Lancet Oncol 2012; 13(2): e58–e68.
    1. Mercadante S, Bruera E. Opioid switching: a systematic and critical review. Cancer Treat Rev 2006; 32(4): 304–315.
    1. Riley J, Ross JR, Rutter D, et al. No pain relief from morphine? Individual variation in sensitivity to morphine and the need to switch to an alternative opioid in cancer patients. Support Care Cancer 2006; 14(1): 56–64.
    1. Meng F, Xie GX, Thompson RC, et al. Cloning and pharmacological characterization of a rat kappa opioid receptor. Proc Natl Acad Sci U S A 1993; 90(21): 9954–9958.
    1. Wang JB, Imai Y, Eppler CM, et al. mu opiate receptor: cDNA cloning and expression. Proc Natl Acad Sci U S A 1993; 90(21): 10230–10234.
    1. Dietis N, Rowbotham DJ, Lambert DG. Opioid receptor subtypes: fact or artifact? Br J Anaesth 2011; 107(1): 8–18.
    1. Matthes HW, Maldonado R, Simonin F, et al. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature 1996; 383(6603): 819–823.
    1. Chou WY, Wang CH, Liu PH, et al. Human opioid receptor A118G polymorphism affects intravenous patient-controlled analgesia morphine consumption after total abdominal hysterectomy. Anesthesiology 2006; 105(2): 334–337.
    1. Chou WY, Yang LC, Lu HF, et al. Association of mu-opioid receptor gene polymorphism (A118G) with variations in morphine consumption for analgesia after total knee arthroplasty. Acta Anaesthesiol Scand 2006; 50(7): 787–792.
    1. Sia AT, Lim Y, Lim EC, et al. A118G single nucleotide polymorphism of human mu-opioid receptor gene influences pain perception and patient-controlled intravenous morphine consumption after intrathecal morphine for postcesarean analgesia. Anesthesiology 2008; 109(3): 520–526.
    1. Janicki PK, Schuler G, Francis D, et al. A genetic association study of the functional A118G polymorphism of the human mu-opioid receptor gene in patients with acute and chronic pain. Anesth Analg 2006; 103(4): 1011–1017.
    1. Lotsch J, von Hentig N, Freynhagen R, et al. Cross-sectional analysis of the influence of currently known pharmacogenetic modulators on opioid therapy in outpatient pain centers. Pharmacogenet Genomics 2009; 19(6): 429–436.
    1. Campa D, Gioia A, Tomei A, et al. Association of ABCB1/MDR1 and OPRM1 gene polymorphisms with morphine pain relief. Clin Pharmacol Ther 2008; 83(4): 559–566.
    1. Walter C, Lotsch J. Meta-analysis of the relevance of the OPRM1 118A>G genetic variant for pain treatment. Pain 2009; 146(3): 270–275.
    1. Kolesnikov Y, Gabovits B, Levin A, et al. Combined catechol-O-methyltransferase and mu-opioid receptor gene polymorphisms affect morphine postoperative analgesia and central side effects. Anesth Analg 2011; 112(2): 448–453.
    1. Kim E, Choi CB, Kang C, et al. Adverse events in analgesic treatment with tramadol associated with CYP2D6 extensive-metaboliser and OPRM1 high-expression variants. Ann Rheum Dis 2010; 69(10): 1889–1890.
    1. Zhang W, Yuan JJ, Kan QC, et al. Study of the OPRM1 A118G genetic polymorphism associated with postoperative nausea and vomiting induced by fentanyl intravenous analgesia. Minerva Anestesiol 2011; 77(1): 33–39.
    1. Klepstad P, Fladvad T, Skorpen F, et al. Influence from genetic variability on opioid use for cancer pain: a European genetic association study of 2294 cancer pain patients. Pain 2011; 152(5): 1139–1145.
    1. Droney JM, Gretton SK, Sato H, et al. Analgesia and central side-effects: two separate dimensions of morphine response. Br J Clin Pharmacol 2013; 75(5): 1340–1350.
    1. Quelle FW, Shimoda K, Thierfelder W, et al. Cloning of murine Stat6 and human Stat6, Stat proteins that are tyrosine phosphorylated in responses to IL-4 and IL-3 but are not required for mitogenesis. Mol Cell Biol 1995; 15(6): 3336–3343.
    1. Ross JR, Rutter D, Welsh K, et al. Clinical response to morphine in cancer patients and genetic variation in candidate genes. Pharmacogenomics J 2005; 5(5): 324–336.
    1. Steele AD, Szabo I, Bednar F, et al. Interactions between opioid and chemokine receptors: heterologous desensitization. Cytokine Growth Factor Rev 2002; 13(3): 209–222.
    1. Zaki PA, Keith DE, Jr., Brine GA, et al. Ligand-induced changes in surface mu-opioid receptor number: relationship to G protein activation? J Pharmacol Exp Ther 2000; 292(3): 1127–1134.
    1. Zhang Y, Xiong W, Lin X, et al. Receptor trafficking induced by mu-opioid-receptor phosphorylation. Neurosci Biobehav Rev 2009; 33(8): 1192–1197.
    1. Bohn LM, Lefkowitz RJ, Gainetdinov RR, et al. Enhanced morphine analgesia in mice lacking beta-arrestin 2. Science 1999; 286(5449): 2495–2498.
    1. Leandro-Garcia LJ, Leskelä S, Montero-Conde C, et al. Determination of CYP2D6 gene copy number by multiplex polymerase chain reaction analysis. Anal Biochem 2009; 389(1): 74–76.
    1. Bernard S, Neville KA, Nguyen AT, et al. Interethnic differences in genetic polymorphisms of CYP2D6 in the U.S. population: clinical implications. Oncologist 2006; 11(2): 126–135.
    1. Lotsch J. Opioid metabolites. J Pain Symptom Manage 2005; 29(Suppl. 5): S10–S24.
    1. Persson K, Sjöström S, Sigurdardottir I, et al. Patient-controlled analgesia (PCA) with codeine for postoperative pain relief in ten extensive metabolisers and one poor metaboliser of dextromethorphan. Br J Clin Pharmacol 1995; 39(2): 182–186.
    1. Sindrup SH, Brøsen K, Bjerring P, et al. Codeine increases pain thresholds to copper vapor laser stimuli in extensive but not poor metabolizers of sparteine. Clin Pharmacol Ther 1990; 48(6): 686–693.
    1. Madadi P, Koren G, Cairns J, et al. Safety of codeine during breastfeeding: fatal morphine poisoning in the breastfed neonate of a mother prescribed codeine. Can Fam Physician 2007; 53(1): 33–35.
    1. Heiskanen T, Olkkola KT, Kalso E. Effects of blocking CYP2D6 on the pharmacokinetics and pharmacodynamics of oxycodone. Clin Pharmacol Ther 1998; 64(6): 603–611.
    1. Thompson CM, Wojno H, Greiner E, et al. Activation of G-proteins by morphine and codeine congeners: insights to the relevance of O- and N-demethylated metabolites at mu- and delta-opioid receptors. J Pharmacol Exp Ther 2004; 308(2): 547–554.
    1. Gronlund J, Saari TI, Hagelberg NM, et al. Exposure to oral oxycodone is increased by concomitant inhibition of CYP2D6 and 3A4 pathways, but not by inhibition of CYP2D6 alone. Br J Clin Pharmacol 2010; 70(1): 78–87.
    1. Samer CF, Daali Y, Wagner M, et al. Genetic polymorphisms and drug interactions modulating CYP2D6 and CYP3A activities have a major effect on oxycodone analgesic efficacy and safety. Br J Pharmacol 2010; 160(4): 919–930.
    1. Samer CF, Daali Y, Wagner M, et al. The effects of CYP2D6 and CYP3A activities on the pharmacokinetics of immediate release oxycodone. Br J Pharmacol 2010; 160(4): 907–918.
    1. Andreassen TN, Eftedal I, Klepstad P, et al. Do CYP2D6 genotypes reflect oxycodone requirements for cancer patients treated for cancer pain? A cross-sectional multicentre study. Eur J Clin Pharmacol 2012; 68(1): 55–64.
    1. Stamer UM, Lehnen K, Höthker F, et al. Impact of CYP2D6 genotype on postoperative tramadol analgesia. Pain 2003; 105(1–2): 231–238.
    1. Stamer UM, Musshoff F, Kobilay M, et al. Concentrations of tramadol and O-desmethyltramadol enantiomers in different CYP2D6 genotypes. Clin Pharmacol Ther 2007; 82(1): 41–47.
    1. Zhang W, Yuan JJ, Kan QC, et al. Influence of CYP3A5*3 polymorphism and interaction between CYP3A5*3 and CYP3A4*1G polymorphisms on post-operative fentanyl analgesia in Chinese patients undergoing gynaecological surgery. Eur J Anaesthesiol 2011; 28(4): 245–250.
    1. Duguay Y, Báár C, Skorpen F, et al. A novel functional polymorphism in the uridine diphosphate-glucuronosyltransferase 2B7 promoter with significant impact on promoter activity. Clin Pharmacol Ther 2004; 75(3): 223–233.
    1. Innocenti F, Liu W, Fackenthal D, et al. Single nucleotide polymorphism discovery and functional assessment of variation in the UDP-glucuronosyltransferase 2B7 gene. Pharmacogenet Genomics 2008; 18(8): 683–697.
    1. Andersen G, Christrup L, Sjogren P. Relationships among morphine metabolism, pain and side effects during long-term treatment: an update. J Pain Symptom Manage 2003; 25(1): 74–91.
    1. Smith MT. Neuroexcitatory effects of morphine and hydromorphone: evidence implicating the 3-glucuronide metabolites. Clin Exp Pharmacol Physiol 2000; 27(7): 524–528.
    1. Kilpatrick GJ, Smith TW. Morphine-6-glucuronide: actions and mechanisms. Med Res Rev 2005; 25(5): 521–544.
    1. Sawyer MB, Innocenti F, Das S, et al. A pharmacogenetic study of uridine diphosphate-glucuronosyltransferase 2B7 in patients receiving morphine. Clin Pharmacol Ther 2003; 73(6): 566–574.
    1. Rutter D. The pharmacogenetics of morphine metabolism. London: University of London, 2008.
    1. Zwisler ST, Enggaard TP, Noehr-Jensen L, et al. The antinociceptive effect and adverse drug reactions of oxycodone in human experimental pain in relation to genetic variations in the OPRM1 and ABCB1 genes. Fundam Clin Pharmacol 2010; 24(4): 517–524.
    1. Coulbault L, Beaussier M, Verstuyft C, et al. Environmental and genetic factors associated with morphine response in the postoperative period. Clin Pharmacol Ther 2006; 79(4): 316–324.
    1. Ross JR, Riley J, Taegetmeyer AB, et al. Genetic variation and response to morphine in cancer patients: catechol-O-methyltransferase and multidrug resistance-1 gene polymorphisms are associated with central side effects. Cancer 2008; 112(6): 1390–1403.
    1. Green H, Söderkvist P, Rosenberg P, et al. mdr-1 single nucleotide polymorphisms in ovarian cancer tissue: g2677T/A correlates with response to paclitaxel chemotherapy. Clin Cancer Res 2006; 12(3 Pt 1): 854–859.
    1. Tanabe M, Ieiri I, Nagata N, et al. Expression of P-glycoprotein in human placenta: relation to genetic polymorphism of the multidrug resistance (MDR)-1 gene. J Pharmacol Exp Ther 2001; 297(3): 1137–1143.
    1. Rakvag TT, Klepstad P, Baar C, et al. The Val158Met polymorphism of the human catechol-O-methyltransferase (COMT) gene may influence morphine requirements in cancer pain patients. Pain 2005; 116(1–2): 73–78.
    1. Laugsand EA, Fladvad T, Skorpen F, et al. Clinical and genetic factors associated with nausea and vomiting in cancer patients receiving opioids. Eur J Cancer 2011; 47(11): 1682–1691.
    1. Hutchinson MR, Coats BD, Lewis SS, et al. Proinflammatory cytokines oppose opioid-induced acute and chronic analgesia. Brain Behav Immun 2008; 22(8): 1178–1189.
    1. Watkins LR, Hutchinson MR, Ledeboer A, et al. Norman Cousins Lecture. Glia as the ‘bad guys’: implications for improving clinical pain control and the clinical utility of opioids. Brain Behav Immun 2007; 21(2): 131–146.
    1. Reyes-Gibby CC, Spitz M, Wu X, et al. Cytokine genes and pain severity in lung cancer: exploring the influence of TNF-alpha-308 G/A IL6-174G/C and IL8-251T/A. Cancer Epidemiol Biomarkers Prev 2007; 16(12): 2745–2751.
    1. Reyes-Gibby CC, El Osta B, Spitz MR, et al. The influence of tumor necrosis factor-alpha -308 G/A and IL-6 -174 G/C on pain and analgesia response in lung cancer patients receiving supportive care. Cancer Epidemiol Biomarkers Prev 2008; 17(11): 3262–3267.
    1. Blower AL, Brooks A, Fenn GC, et al. Emergency admissions for upper gastrointestinal disease and their relation to NSAID use. Aliment Pharmacol Ther 1997; 11(2): 283–291.
    1. Hawkey CJ, Cullen DJ, Greenwood DC, et al. Prescribing of nonsteroidal anti-inflammatory drugs in general practice: determinants and consequences. Aliment Pharmacol Ther 1997; 11(2): 293–298.
    1. Moncada S, Gryglewski R, Bunting S, et al. An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 1976; 263(5579): 663–665.
    1. Whittle BJ, Boughton-Smith NK, Moncada S, et al. Actions of prostacyclin (PGI2) and its product, 6-oxo-PGF1alpha on the rat gastric mucosa in vivo and in vitro. Prostaglandins 1978; 15(6): 955–967.
    1. Kurumbail RG, Stevens AM, Gierse JK, et al. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature 1996; 384(6610): 644–648.
    1. Riendeau D, Percival MD, Brideau C, et al. Etoricoxib (MK-0663): preclinical profile and comparison with other agents that selectively inhibit cyclooxygenase-2. J Pharmacol Exp Ther 2001; 296(2): 558–566.
    1. Ulrich CM, Bigler J, Sibert J, et al. Cyclooxygenase 1 (COX1) polymorphisms in African-American and Caucasian populations. Human Mutat 2002; 20(5): 409–410.
    1. Sansbury LB, Millikan RC, Schroeder JC, et al. COX-2 polymorphism, use of nonsteroidal anti-inflammatory drugs, and risk of colon cancer in African Americans (United States). Cancer Causes Control 2006; 17(3): 257–266.
    1. Arisawa T, Hirata I. Genetic polymorphism of COX-1 gene and NSAID-induced ulcer. Nihon Rinsho 2007; 65(10): 1885–1889.
    1. Clappers N, van Oijen MG, Sundaresan S, et al. The C50T polymorphism of the cyclooxygenase-1 gene and the risk of thrombotic events during low-dose therapy with acetyl salicylic acid. Thromb Haemos 2008; 100(1): 70–75.
    1. Van Oijen MG, Laheij RJ, Koetsier M, et al. Effect of a specific cyclooxygenase-gene polymorphism (A-842G/C50T) on the occurrence of peptic ulcer hemorrhage. Dig Dis Sci 2006; 51(12): 2348–2352.
    1. Cipollone F, Toniato E, Martinotti S, et al. A polymorphism in the cyclooxygenase 2 gene as an inherited protective factor against myocardial infarction and stroke. JAMA 2004; 291(18): 2221–2228.
    1. De Vries HS, te Morsche RH, van Oijen MG, et al. The functional -765G–>C polymorphism of the COX-2 gene may reduce the risk of developing Crohn’s disease. PloS One 2010; 5(11): e15011.
    1. Szczeklik W, Sanak M, Szczeklik A. Functional effects and gender association of COX-2 gene polymorphism G-765C in bronchial asthma. J Allergy Clin Immunol 2004; 114(2): 248–253.
    1. Sharma V, Kaul S, Al-Hazzani A, et al. Association of COX-2 rs20417 with aspirin resistance. J Thromb Thrombolysis 2013; 35(1): 95–99.
    1. Ali ZK, Kim RJ, Ysla FM. CYP2C9 polymorphisms: considerations in NSAID therapy. Curr Opin Drug Discov Devel 2009; 12(1): 108–114.
    1. Goldstein JA, de Morais SM. Biochemistry and molecular biology of the human CYP2C subfamily. Pharmacogenetics 1994; 4(6): 285–299.
    1. Stubbins MJ, Harries LW, Smith G, et al. Genetic analysis of the human cytochrome P450 CYP2C9 locus. Pharmacogenetics 1996; 6(5): 429–439.
    1. Kidd RS, Straughn AB, Meyer MC, et al. Pharmacokinetics of chlorpheniramine, phenytoin, glipizide and nifedipine in an individual homozygous for the CYP2C9*3 allele. Pharmacogenetics 1999; 9(1): 71–80.
    1. Sullivan-Klose TH, Ghanayem BI, Bell DA, et al. The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics 1996; 6(4): 341–349.
    1. Yamazaki H, Inoue K, Chiba K, et al. Comparative studies on the catalytic roles of cytochrome P450 2C9 and its Cys- and Leu-variants in the oxidation of warfarin, flurbiprofen, and diclofenac by human liver microsomes. Biochem Pharmacol 1998; 56(2): 243–251.
    1. Crespi CL, Miller VP. The R144C change in the CYP2C9*2 allele alters interaction of the cytochrome P450 with NADPH:cytochrome P450 oxidoreductase. Pharmacogenetics 1997; 7(3): 203–210.
    1. Davies NM. Clinical pharmacokinetics of ibuprofen. The first 30 years. Clin Pharmacokinet 1998; 34(2): 101–154.
    1. Hamman MA, Thompson GA, Hall SD. Regioselective and stereoselective metabolism of ibuprofen by human cytochrome P450 2C. Biochem Pharmacol 1997; 54(1): 33–41.
    1. Martinez C, Blanco G, Ladero JM, et al. Genetic predisposition to acute gastrointestinal bleeding after NSAIDs use. Br J Pharmacol 2004; 141(2): 205–208.
    1. Agundez JA, Garcia-Martin E, Martinez C. Genetically based impairment in CYP2C8- and CYP2C9-dependent NSAID metabolism as a risk factor for gastrointestinal bleeding: is a combination of pharmacogenomics and metabolomics required to improve personalized medicine? Expert Opin Drug Metab Toxicol 2009; 5(6): 607–620.
    1. Daily EB, Aquilante CL. Cytochrome P450 2C8 pharmacogenetics: a review of clinical studies. Pharmacogenomics 2009; 10(9): 1489–1510.
    1. Garcia-Martin E, Martínez C, Tabarés B, et al. Interindividual variability in ibuprofen pharmacokinetics is related to interaction of cytochrome P450 2C8 and 2C9 amino acid polymorphisms. Clin Pharmacol Ther 2004; 76(2): 119–127.
    1. Eijkelkamp N, Linley JE, Baker MD, et al. Neurological perspectives on voltage-gated sodium channels. Brain 2012; 135(Pt 9): 2585–2612.
    1. Toledo-Aral JJ, Moss BL, He ZJ, et al. Identification of PN1, a predominant voltage-dependent sodium channel expressed principally in peripheral neurons. Proc Natl Acad Sci U S A 1997; 94(4): 1527–1532.
    1. Cummins TR, Howe JR, Waxman SG. Slow closed-state inactivation: a novel mechanism underlying ramp currents in cells expressing the hNE/PN1 sodium channel. J Neurosci 1998; 18(23): 9607–9619.
    1. Rush AM, Cummins TR, Waxman SG. Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons. J Physiol 2007; 579(Pt 1): 1–14.
    1. Catterall WA. Molecular properties of brain sodium channels: an important target for anticonvulsant drugs. Adv Neurol 1999; 79: 441–456.
    1. Sheets PL, Jackson JO, II, Waxman SG, et al. A Nav1.7 channel mutation associated with hereditary erythromelalgia contributes to neuronal hyperexcitability and displays reduced lidocaine sensitivity. J Physiol 2007; 581(Pt 3): 1019–1031.
    1. Kuhnert SM, Phillips WJ, Davis MD. Lidocaine and mexiletine therapy for erythromelalgia. Arch Dermatol 1999; 135(12): 1447–1449.
    1. Cregg R, Laguda B, Werdehausen R, et al. Novel mutations mapping to the fourth sodium channel domain of Nav1.7 result in variable clinical manifestations of primary erythromelalgia. Neuromolecular Med 2013; 15(2): 265–278.
    1. Mogil JS, Wilson SG, Chesler EJ, et al. The melanocortin-1 receptor gene mediates female-specific mechanisms of analgesia in mice and humans. Proc Natl Acad Sci U S A 2003; 100(8): 4867–4872.
    1. Liem EB, Joiner TV, Tsueda K, et al. Increased sensitivity to thermal pain and reduced subcutaneous lidocaine efficacy in redheads. Anesthesiology 2005; 102(3): 509–514.
    1. Abdel-Malek ZA. Melanocortin receptors: their functions and regulation by physiological agonists and antagonists. Cell Mol Life Sci 2001; 58(3): 434–441.
    1. Xia Y, Wikberg JE, Chhajlani V. Expression of melanocortin 1 receptor in periaqueductal gray matter. Neuroreport 1995; 6(16): 2193–2196.
    1. Reimann F, Cox JJ, Belfer I, et al. Pain perception is altered by a nucleotide polymorphism in SCN9A. Proc Natl Acad Sci U S A 2010; 107(11): 5148–5153.
    1. Dean RA, Christian CD, Sample RH, et al. Human liver cocaine esterases: ethanol-mediated formation of ethylcocaine. FASEB J 1991; 5(12): 2735–2739.
    1. Brzezinski MR, Abraham TL, Stone CL, et al. Purification and characterization of a human liver cocaine carboxylesterase that catalyzes the production of benzoylecgonine and the formation of cocaethylene from alcohol and cocaine. Biochem Pharmacol 1994; 48(9): 1747–1755.
    1. Kalow W, Staron N. On distribution and inheritance of atypical forms of human serum cholinesterase, as indicated by dibucaine numbers. Can J Biochem Physiol 1957; 35(12): 1305–1320.
    1. Lockridge O, Mottershaw-Jackson N, Eckerson HW, et al. Hydrolysis of diacetylmorphine (heroin) by human serum cholinesterase. J Pharmacol Exp Ther 1980; 215(1): 1–8.
    1. Xie W, Altamirano CV, Bartels CF, et al. An improved cocaine hydrolase: the A328Y mutant of human butyrylcholinesterase is 4-fold more efficient. Mol Pharmacol 1999; 55(1): 83–91.
    1. Zsigmond EK, Eilderton TE. Survey of local anesthetic toxicity in the families of patients with atypical plasma cholinesterase. J Oral Surg 1975; 33(11): 833–837.
    1. Watkins PB. Cyclosporine and liver transplantation: will the midazolam test make blood level monitoring obsolete? Hepatology 1995; 22(3): 994–996.
    1. Shimada T, Yamazaki H, Mimura M, et al. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 1994; 270(1): 414–423.
    1. Wang D, Guo Y, Wrighton SA, et al. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J 2011; 11(4): 274–286.
    1. Lewis DF, Lake BG, Dickins M. Substrates of human cytochromes P450 from families CYP1 and CYP2: analysis of enzyme selectivity and metabolism. Drug Metabol Drug Interact 2004; 20(3): 111–142.
    1. Aklillu E, Carrillo JA, Makonnen E, et al. Genetic polymorphism of CYP1A2 in Ethiopians affecting induction and expression: characterization of novel haplotypes with single-nucleotide polymorphisms in intron 1. Mol Pharmacol 2003; 64(3): 659–669.
    1. Faber MS, Fuhr U. Time response of cytochrome P450 1A2 activity on cessation of heavy smoking. Clin Pharm Ther 2004; 76(2): 178–184.
    1. Hamdy SI, Hiratsuka M, Narahara K, et al. Genotyping of four genetic polymorphisms in the CYP1A2 gene in the Egyptian population. Br J Clin Pharmacol 2003; 55(3): 321–324.
    1. Barden J, Edwards J, Moore A, et al. Single dose oral paracetamol (acetaminophen) for postoperative pain. Cochrane Database Syst Rev 2004; 1: CD004602.
    1. Moore A, Collins S, Carroll D, et al. Paracetamol with and without codeine in acute pain: a quantitative systematic review. Pain 1997; 70(2–3): 193–201.
    1. Prior MJ, Cooper KM, May LG, et al. Efficacy and safety of acetaminophen and naproxen in the treatment of tension-type headache. A randomized, double-blind, placebo-controlled trial. Cephalalgia 2002; 22(9): 740–748.
    1. Zhang W, Jones A, Doherty M. Does paracetamol (acetaminophen) reduce the pain of osteoarthritis? A meta-analysis of randomised controlled trials. Ann Rheum Dis 2004; 63(8): 901–907.
    1. Hogestatt ED, Jönsson BA, Ermund A, et al. Conversion of acetaminophen to the bioactive N-acylphenolamine AM404 via fatty acid amide hydrolase-dependent arachidonic acid conjugation in the nervous system. J Biol Chem 2005; 280(36): 31405–31412.
    1. Köfalvi A. Alternative interacting sites and novel receptors for cannabinoid ligands. In: Köfalvi A. (ed.) Cannabinoids and the brain. New York: Springer, 2008, pp. 131–160.
    1. Pickering G, Loriot MA, Libert F, et al. Analgesic effect of acetaminophen in humans: first evidence of a central serotonergic mechanism. Clin Pharmacol Ther 2006; 79(4): 371–378.
    1. Hinz B, Cheremina O, Brune K. Acetaminophen (paracetamol) is a selective cyclooxygenase-2 inhibitor in man. FASEB J 2008; 22(2): 383–390.
    1. Ryder SD, Beckingham IJ. ABC of diseases of liver, pancreas, and biliary system. Other causes of parenchymal liver disease. BMJ 2001; 322(7281): 290–292.
    1. Heard KJ. Acetylcysteine for acetaminophen poisoning. N Engl J Med 2008; 359(3): 285–292.
    1. De Morais SM, Uetrecht JP, Wells PG. Decreased glucuronidation and increased bioactivation of acetaminophen in Gilbert’s syndrome. Gastroenterology 1992; 102(2): 577–586.
    1. Patel M, Tang BK, Kalow W. Variability of acetaminophen metabolism in Caucasians and Orientals. Pharmacogenetics 1992; 2(1): 38–45.
    1. Marzilawati AR, Ngau YY, Mahadeva S. Low rates of hepatotoxicity among Asian patients with paracetamol overdose: a review of 1024 cases. BMC Pharmacol Toxicol 2012; 13(1): 8.
    1. Lauterburg BH, Velez ME. Glutathione deficiency in alcoholics: risk factor for paracetamol hepatotoxicity. Gut 1988; 29(9): 1153–1157.
    1. Sinner B, Graf BM. Ketamine. Handb Exp Pharmacol 2008; 182: 313–333.
    1. Aroni F, Iacovidou N, Dontas I, et al. Pharmacological aspects and potential new clinical applications of ketamine: reevaluation of an old drug. J Clin Pharmacol 2009; 49(8): 957–964.
    1. Persson J, Hasselström J, Maurset A, et al. Pharmacokinetics and non-analgesic effects of S- and R-ketamines in healthy volunteers with normal and reduced metabolic capacity. Eur J Clin Pharmacol 2002; 57(12): 869–875.
    1. Onghena P, Van Houdenhove B. Antidepressant-induced analgesia in chronic non-malignant pain: a meta-analysis of 39 placebo-controlled studies. Pain 1992; 49(2): 205–219.
    1. Fishbain D. Evidence-based data on pain relief with antidepressants. Ann Med 2000; 32(5): 305–316.
    1. Moore RA, Derry S, Aldington D, et al. Amitriptyline for neuropathic pain and fibromyalgia in adults. Cochrane Database Syst Rev 2012; 12: CD008242.
    1. Tatsumi M, Groshan K, Blakely RD, et al. Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur J Pharmacol 1997; 340(2–3): 249–258.
    1. Kim H, Lee H, Rowan J, et al. Genetic polymorphisms in monoamine neurotransmitter systems show only weak association with acute post-surgical pain in humans. Mol Pain 2006; 2: 24.
    1. Muralidharan A, Smith MT. Pain, analgesia and genetics. J Pharm Pharmacol 2011; 63(11): 1387–1400.
    1. Walling AD, Dickson G. Guillain-Barre syndrome. Am Fam Physician 2013; 87(3): 191–197.
    1. Choi JS, Boralevi F, Brissaud O, et al. Paroxysmal extreme pain disorder: a molecular lesion of peripheral neurons. Nat Rev Neurol 2011; 7(1): 51–55.
    1. Theile JW, Cummins TR. Inhibition of Navbeta4 peptide-mediated resurgent sodium currents in Nav1.7 channels by carbamazepine, riluzole, and anandamide. Mol Pharmacol 2011; 80(4): 724–734.
    1. Fischer TZ, Gilmore ES, Estacion M, et al. A novel Nav1.7 mutation producing carbamazepine-responsive erythromelalgia. Ann Neurol 2009; 65(6): 733–741.
    1. Dib-Hajj SD, Estacion M, Jarecki BW, et al. Paroxysmal extreme pain disorder M1627K mutation in human Nav1.7 renders DRG neurons hyperexcitable. Mol Pain 2008; 4: 37.
    1. Rzany B, Hering O, Mockenhaupt M, et al. Histopathological and epidemiological characteristics of patients with erythema exudativum multiforme major, Stevens-Johnson syndrome and toxic epidermal necrolysis. Br J Dermatol 1996; 135(1): 6–11.
    1. Roujeau JC. The spectrum of Stevens-Johnson syndrome and toxic epidermal necrolysis: a clinical classification. J Invest Dermatol 1994; 102(6): 28S–30S.
    1. McCormack M, Alfirevic A, Bourgeois S, et al. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N Engl J Med 2011; 364(12): 1134–1143.
    1. Kaniwa N, Saito Y, Aihara M, et al. HLA-B*1511 is a risk factor for carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Japanese patients. Epilepsia 2010; 51(12): 2461–2465.
    1. Ozeki T, Mushiroda T, Yowang A, et al. Genome-wide association study identifies HLA-A*3101 allele as a genetic risk factor for carbamazepine-induced cutaneous adverse drug reactions in Japanese population. Hum Mol Genet 2011; 20(5): 1034–1041.
    1. Ma JD, Lee KC, Kuo GM. Clinical application of pharmacogenomics. J Pharm Pract 2012; 25(4): 417–427.
    1. Nielsen CS, Stubhaug A, Price DD, et al. Individual differences in pain sensitivity: genetic and environmental contributions. Pain 2008; 136(1–2): 21–29.
    1. Zondervan KT, Cardon LR. The complex interplay among factors that influence allelic association. Nat Rev Genet 2004; 5(2): 89–100.
    1. Lotsch J, Geisslinger G. Pharmacogenetics of new analgesics. Br J Pharmacol 2011; 163(3): 447–460.
    1. Reyes-Gibby CC, Shete S, Rakvåg T, et al. Exploring joint effects of genes and the clinical efficacy of morphine for cancer pain: OPRM1 and COMT gene. Pain 2007; 130(1–2): 25–30.
    1. Feinberg AP. Genome-scale approaches to the epigenetics of common human disease. Virchows Arch 2010; 456(1): 13–21.
    1. Borrelli E, Nestler EJ, Allis CD, et al. Decoding the epigenetic language of neuronal plasticity. Neuron 2008; 60(6): 961–974.
    1. Uchida H, Ma L, Ueda H. Epigenetic gene silencing underlies C-fiber dysfunctions in neuropathic pain. J Neurosci 2010; 30(13): 4806–4814.
    1. Uchida H, Sasaki K, Ma L, et al. Neuron-restrictive silencer factor causes epigenetic silencing of Kv4.3 gene after peripheral nerve injury. Neuroscience 2010; 166(1): 1–4.
    1. Mattick JS, Amaral PP, Dinger ME, et al. RNA regulation of epigenetic processes. Bioessays 2009; 31(1): 51–59.
    1. Zhao J, Lee M-C, Momin A, et al. Small RNAs control sodium channel expression, nociceptor excitability, and pain thresholds. J Neurosci 2010; 30(32): 10860–10871.
    1. Lee KC, Ma JD, Kuo GM. Pharmacogenomics: bridging the gap between science and practice. J Am Pharm Assoc 2010; 50(1): e1–e14; quiz e15–e17.

Source: PubMed

3
Subscribe