Performance of an electronic health record-based phenotype algorithm to identify community associated methicillin-resistant Staphylococcus aureus cases and controls for genetic association studies

Kathryn L Jackson, Michael Mbagwu, Jennifer A Pacheco, Abigail S Baldridge, Daniel J Viox, James G Linneman, Sanjay K Shukla, Peggy L Peissig, Kenneth M Borthwick, David A Carrell, Suzette J Bielinski, Jacqueline C Kirby, Joshua C Denny, Frank D Mentch, Lyam M Vazquez, Laura J Rasmussen-Torvik, Abel N Kho, Kathryn L Jackson, Michael Mbagwu, Jennifer A Pacheco, Abigail S Baldridge, Daniel J Viox, James G Linneman, Sanjay K Shukla, Peggy L Peissig, Kenneth M Borthwick, David A Carrell, Suzette J Bielinski, Jacqueline C Kirby, Joshua C Denny, Frank D Mentch, Lyam M Vazquez, Laura J Rasmussen-Torvik, Abel N Kho

Abstract

Background: Community associated methicillin-resistant Staphylococcus aureus (CA-MRSA) is one of the most common causes of skin and soft tissue infections in the United States, and a variety of genetic host factors are suspected to be risk factors for recurrent infection. Based on the CDC definition, we have developed and validated an electronic health record (EHR) based CA-MRSA phenotype algorithm utilizing both structured and unstructured data.

Methods: The algorithm was validated at three eMERGE consortium sites, and positive predictive value, negative predictive value and sensitivity, were calculated. The algorithm was then run and data collected across seven total sites. The resulting data was used in GWAS analysis.

Results: Across seven sites, the CA-MRSA phenotype algorithm identified a total of 349 cases and 7761 controls among the genotyped European and African American biobank populations. PPV ranged from 68 to 100% for cases and 96 to 100% for controls; sensitivity ranged from 94 to 100% for cases and 75 to 100% for controls. Frequency of cases in the populations varied widely by site. There were no plausible GWAS-significant (p < 5 E -8) findings.

Conclusions: Differences in EHR data representation and screening patterns across sites may have affected identification of cases and controls and accounted for varying frequencies across sites. Future work identifying these patterns is necessary.

Keywords: Electronic Health Record; GWAS; Phenotyping; ca-MRSA Phenotype; ca_MRSA.

Figures

Fig. 1
Fig. 1
Algorithm for the identification of patients with CA-MRSA
Fig. 2
Fig. 2
Algorithm for the identification of CA-MRSA controls

References

    1. Chua K, et al. Antimicrobial resistance: Not community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA)! A clinician’s guide to community MRSA - its evolving antimicrobial resistance and implications for therapy. Clin Infect Dis. 2011;52(1):99–114. doi: 10.1093/cid/ciq067.
    1. Elston DM. How to handle a CA-MRSA outbreak. Dermatol Clin. 2009;27(1):43–48. doi: 10.1016/j.det.2008.07.005.
    1. Maree CL, et al. Community-associated methicillin-resistant Staphylococcus aureus isolates causing healthcare-associated infections. Emerg Infect Dis. 2007;13(2):236–242. doi: 10.3201/eid1302.060781.
    1. Mediavilla JR, et al. Global epidemiology of community-associated methicillin resistant Staphylococcus aureus (CA-MRSA) Curr Opin Microbiol. 2012;15(5):588–595. doi: 10.1016/j.mib.2012.08.003.
    1. Shukla SK. Community-associated methicillin-resistant Staphylococcus aureus and its emerging virulence. Clin Med Res. 2005;3(2):57–60. doi: 10.3121/cmr.3.2.57.
    1. Shukla SK, Rose W, Schrodi SJ. Complex host genetic susceptibility to Staphylococcus aureus infections. Trends Microbiol. 2015;23(9):529–536. doi: 10.1016/j.tim.2015.05.008.
    1. Ye Z, et al. Genome wide association study of SNP-, gene-, and pathway-based approaches to identify genes influencing susceptibility to Staphylococcus aureus infections. Front Genet. 2014;5:125. doi: 10.3389/fgene.2014.00125.
    1. Sattler CA, Mason EO, Jr, Kaplan SL. Prospective comparison of risk factors and demographic and clinical characteristics of community-acquired, methicillin-resistant versus methicillin-susceptible Staphylococcus aureus infection in children. Pediatr Infect Dis J. 2002;21(10):910–917. doi: 10.1097/00006454-200210000-00005.
    1. Benoit SR, et al. Community strains of methicillib-resistant Staphlococcus aureus as potential cause of healthcare-associated infections, Uruguay, 2002–3004. Emerg Infect Dis. 2008
    1. Minnesota Department of Health. . Accessed 30 June 2016.
    1. Millar BC, et al. Proposed definitions of community-associated meticillin-resistant Staphylococcus aureus (CA-MRSA) J Hosp Infect. 2007;67(2):109–113. doi: 10.1016/j.jhin.2007.06.003.
    1. Wei WQ, et al. Impact of data fragmentation across healthcare centers on the accuracy of a high-throughput clinical phenotyping algorithm for specifying subjects with type 2 diabetes mellitus. J Am Med Inform Assoc. 2012;19(2):219–224. doi: 10.1136/amiajnl-2011-000597.
    1. Pathak J, Kho AN, Denny JC. Electronic health records-driven phenotyping: challenges, recent advances, and perspectives. J Am Med Inform Assoc. 2013;20(e2):e206–e211. doi: 10.1136/amiajnl-2013-002428.
    1. McCarty CA, et al. The eMERGE Network: a consortium of biorepositories linked to electronic medical records data for conducting genomic studies. BMC Med Genomics. 2001;4:13. doi: 10.1186/1755-8794-4-13.
    1. Gottesman O, et al. The Electronic Medical Records and Gemonimcs (eMERGE) network: past, present, and future. Genet Med. 2013;15(10):761–771. doi: 10.1038/gim.2013.72.
    1. McCarty CA, et al. The eMERGE Network: a consortium of biorepositories linked to electronic medical records data for conducting genomic studies. BMC Med Genomics. 2011;4:13. doi: 10.1186/1755-8794-4-13.
    1. Muthalagu A, et al. A rigorous algorithm to detect and clean inaccurate adult height records within EHR systems. Appl Clin Inform. 2014;5(1):118–126. doi: 10.4338/ACI-2013-09-RA-0074.
    1. Newton KM, et al. Validation of electronic medical record-based phenotyping algorithms: results and lessons learned from the eMERGE network. J Am Med Inform Assoc. 2013;20(e1):e147–e154. doi: 10.1136/amiajnl-2012-000896.
    1. Kho AN, et al. Electronic medical records for genetic research: results of the eMERGE consortium. Sci Transl Med. 2011;3(79):79re1. doi: 10.1126/scitranslmed.3001807.
    1. Mistry RD, et al. Clinical management of skin and soft tissue infections in the U.S. emergency departments. West J Emerg Med. 2014;15(4):491–498. doi: 10.5811/westjem.2014.4.20583.
    1. McCaig LF, et al. Staphylococcus aureus-associated skin and soft tissue infections in ambulatory care. Emerg Infect Dis. 2006;12(11):1715–1723. doi: 10.3201/eid1211.060190.
    1. Kho AN, et al. A regional informatics platform for coordinated antibiotic-resistant infection tracking, alerting, and prevention. Clin Infect Dis. 2013;57(2):254–262. doi: 10.1093/cid/cit229.
    1. Crosslin DR, et al. Controlling for population structure and genotyping platform bias in the eMERGE multi-institutional biobnak linked to electronic health records. Front Genet. 2014;5:352. doi: 10.3389/fgene.2014.00352.
    1. Mosley JD, et al. A genome-wide association study identifieds variants in KCNIP4 associated with ACE inhibitor-induced cough. Pharmacogenomics J. 2015;16(3):231–237. doi: 10.1038/tpj.2015.51.
    1. Zuvich RL, et al. Pitfalls of merging GWAS data: lessons learned in the eMERGE network and quality control procedures to maintain hight data quality. Genet Epidemiol. 2001;35(8):887–898. doi: 10.1002/gepi.20639.
    1. Howie B, et al. Fast and accurate genotype inputation in genome-wide association studies through pre-phasing. Nat Genet. 2012;44(8):955–959. doi: 10.1038/ng.2354.
    1. Patterson N, et al. Population structure and eigenanalysis. PLoS Genet. 2006;2(12):e190. doi: 10.1371/journal.pgen.0020190.
    1. Wellcome Trust Case Control Consortium Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–678. doi: 10.1038/nature05911.
    1. Lenz R, et al. The distinct category of healthcare associated bloodstreem infections. BMC Infect Dis. 2012;12:85. doi: 10.1186/1471-2334-12-85.
    1. Wang SH, et al. Molecular and clinical characteristics of hospital and community onset methicillin-resitant Staphylococcus aureur strains associated with bloodstream infections. J Clin Microbiol. 2015;53(5):1599–1608. doi: 10.1128/JCM.03147-14.
    1. Casey JA, et al. A population-based study of the epidemiology and clinical features of methicillin-resistant Staphylococcus aureus infection in Pennsylvania, 2001–2010. Epidemiol Infect. 2013;141(6):1166–1179. doi: 10.1017/S0950268812001872.
    1. Casey JA, et al. High-density livestock operations, crop field application of manure, and risk of community-associated methicillin-resistant Staphylococcus aureus infection in Pennsylvania. JAMA Intern Med. 2013;173(21):1980–1990. doi: 10.1001/jamainternmed.2013.10408.
    1. Kho AN, et al. Use of a regional health information exchange to detect crossover of patients with MRSA between urban hospitals. J Am Med Inform Assoc. 2008;15(2):212–216. doi: 10.1197/jamia.M2577.
    1. Dukic VM, et al. Epidemics of community-associated methicillin-resistant Staphylococcus aureus in the United States: a meta-analysis. Otto M, ed. PLoS ONE. 2013;8(1):e52722. doi:10.1371/journal.pone.0052722.
    1. Lyles RD, et al. Regional epidemiology of methicillin-resistant Staphylococcus aureus among critically ill children in a state with mandated active surveillance. J Pediatric Infect Dis Soc. 2015.
    1. Kavanagh KT, et al. The use of surveillance and preventative measures for methicillin-resistant staphylococcus aureus infections in surgical patients. Antimicrob Resist Infect Control. 2014;3(1):1–7. doi: 10.1186/2047-2994-3-18.
    1. Brown EL, et al. Genome-wide association study of Staphylococcus aureus carriage in a community-based sample of Mexican-Americans in Starr County, Texas. PLoS One. 2015;10(11):e0142130. doi: 10.1371/journal.pone.0142130.

Source: PubMed

3
Subscribe