Neurophysiological Effects of Whole Coffee Cherry Extract in Older Adults with Subjective Cognitive Impairment: A Randomized, Double-Blind, Placebo-Controlled, Cross-Over Pilot Study

Jennifer L Robinson, Julio A Yanes, Meredith A Reid, Jerry E Murphy, Jessica N Busler, Petey W Mumford, Kaelin C Young, Zbigniew J Pietrzkowski, Boris V Nemzer, John M Hunter, Darren T Beck, Jennifer L Robinson, Julio A Yanes, Meredith A Reid, Jerry E Murphy, Jessica N Busler, Petey W Mumford, Kaelin C Young, Zbigniew J Pietrzkowski, Boris V Nemzer, John M Hunter, Darren T Beck

Abstract

Bioactive plant-based compounds have shown promise as protective agents across multiple domains including improvements in neurological and psychological measures. Methodological challenges have limited our understanding of the neurophysiological changes associated with polyphenol-rich supplements such as whole coffee cherry extract (WCCE). In the current study, we (1) compared 100 mg of WCCE to a placebo using an acute, randomized, double-blind, within-subject, cross-over design, and we (2) conducted a phytochemical analysis of WCCE. The primary objective of the study was to determine the neurophysiological and behavioral changes that resulted from the acute administration of WCCE. We hypothesized that WCCE would increase brain-derived neurotrophic factor (BDNF) and glutamate levels while also increasing neurofunctional measures in cognitive brain regions. Furthermore, we expected there to be increased behavioral performance associated with WCCE, as measured by reaction time and accuracy. Participants underwent four neuroimaging scans (pre- and post-WCCE and placebo) to assess neurofunctional/metabolic outcomes using functional magnetic resonance imaging and magnetic resonance spectroscopy. The results suggest that polyphenol-rich WCCE is associated with decreased reaction time and may protect against cognitive errors on tasks of working memory and response inhibition. Behavioral findings were concomitant with neurofunctional changes in structures involved in decision-making and attention. Specifically, we found increased functional connectivity between the anterior cingulate and regions involved in sensory and decision-making networks. Additionally, we observed increased BDNF and an increased glutamate/gamma-aminobutyric acid (GABA) ratio following WCCE administration. These results suggest that WCCE is associated with acute neurophysiological changes supportive of faster reaction times and increased, sustained attention.

Keywords: 7T; functional magnetic resonance imaging; nutraceuticals; polyphenols; spectroscopy.

Conflict of interest statement

This work was supported by VDF FutureCeuticals, Inc. (grant #G00010324, awarded to J.L.R. and D.T.B.). Study capsules were provided by VDF FutureCeuticals, Inc. Z.J.P., B.V.N., and J.M.H. are employees and receive compensation from VDF FutureCeuticals, Inc. Following completion of the study, data analysis, and manuscript write-up, J.L.R. has since engaged in a paid consultant role with VDF FutureCeuticals, Inc., however all analyses and manuscript development/editing occurred prior to the establishment of this relationship. All other authors report no conflicts of interest. VDF FutureCeuticals, Inc. maintained the blind drug assignment, but otherwise played no part in the data collection or analysis. The sponsor provided minor proofreading comments on the final draft of the manuscript prior to submission, with ultimate approval of any changes to the manuscript contents by all authors unaffiliated with the sponsor.

Figures

Figure 1
Figure 1
LC–MS base peak chromatogram (BPC) profile of whole coffee cherry extract (WCCE), adapted from the work of Nemzer and colleagues (under review) [27]. The major detected peaks were labelled with peak numbers ranging from 1 to 24, and the compounds corresponding to each peak are identified here: 1. gluconic acid; 2. quinic acid; 3. malic acid; 4. citric acid; 5. 2-hydroxyglutaric acid; 6. 3-O-caffeoylquinic acid (3-CQA); 7. protocatechualdehyde; 8. 3- coumaroylquinic acid (3-CoQA); 9. 5-CQA; 10. 3-feruloylquinic acid (3-FQA); 11. 4-CQA; 12. caffeic acid; 13. 5-CoQA; 14. 4-CoQA; 15. 5-FQA; 16. 4-FQA; 17. quinic acid-glucoside-R*; 18. 3-dicaffeoylquinic acid (3-DiCQA); 19. 5-DiCQA; 20. 4-DiCQA; 21. 3-Caffeoyl-5-FQA; 22. valeroylquinic acid (VQA) diglucoside-R*; 23. caffeoyl tryptophan; and 24. dimethylcaffeic acid. Other compounds identified in WCCE in the positive ion mode include pantothenic acid, trigonelline, choline, and glycerophosphocholine derivatives. Figure adapted from the work of Nemzer et al. (under review) [27]. A listing of the typical polyphenols found in WCCE can be found in Table 1.
Figure 2
Figure 2
Study design overview. For the Visit 1 and Visit 2 Assessment, 0:00 indicates the participants arrival at the imaging center. Subsequent times indicate hours and minutes since arrival. AUMRIRC: Auburn University MRI Research Center.
Figure 3
Figure 3
Magnetic resonance spectroscopy (MRS) voxel placement in the dorsal anterior cingulate cortex (dACC) and representative spectra. The 7 Tesla (7T) spectroscopy offers significant advantages, including more accurate assessments of glutamate and glutamine.
Figure 4
Figure 4
Differences in the pre–post consumption of WCCE or placebo for go trials (uppermost panel), no-go trials (middle panel), and all trials collapsed (bottom panel). In all panels, WCCE is presented on the left side, and the placebo is presented on the right. Statistic images were thresholded on magnitude (z ≥ 2.3), as well as cluster extent-determined by z > 2.3 and a corrected cluster significance threshold of p < 0.05. Local maxima tables for each contrast are available at https://osf.io/qypr8/. Abbreviations: LACC = left anterior cingulate cortex; LIFG = left inferior frontal gyrus; LINS = left insula; LMOG = left middle occipital gyrus; LPCC = left posterior cingulate cortex; RCG = right cingulate gyrus; and STG = superior temporal gyrus.
Figure 5
Figure 5
Anterior cingulate functional connectivity differences (post > pre) during the n-back task. WCCE showed greater connectivity post-consumption between the ACC and the paracingulate, the precuneus, and portions of the superior frontal gyrus and frontal poles. The placebo demonstrated a greater connectivity between the ACC and portions of the left dorsolateral prefrontal cortex, as well as the precuneus. Data were thresholded with puncorrected < 0.01 height threshold, pFDR-corrected < 0.05 cluster threshold, one-tailed.
Figure 6
Figure 6
Bar graph with M ± SEM demonstrating the changes in glutamate, gamma-aminobutyric acid (GABA), and the ratios of glutamate/GABA (GLU/GABA) and glutamine/GABA (GLN/GABA) within the anterior cingulate cortex following the administration of either the placebo or WCCE. Y-axis units of measurement are institutional units. A * indicates significance at the p < 0.05 level for one-tailed t-tests. For descriptive data, please see the supplemental table hosted at https://osf.io/qypr8/. Clear bars represent the placebo, while gray bars represent WCCE. Striped bars indicate post-measurements.
Figure 7
Figure 7
Pre- and post-consumption data for exosomal brain-derived neurotrophic factor (BDNF). Thin black lines indicate individual participant data, while the thicker white line depicts the group average. The dark gray shading surrounding the white line uses locally weighted regression (loess) for a visualization of group variability. Line graphs were created with open-source software ggplot2 in R.

References

    1. Cao H., Ou J., Chen L., Zhang Y., Szkudelski T., Delmas D., Daglia M., Xiao J. Dietary polyphenols and type 2 diabetes: Human Study and Clinical Trial. Crit. Rev. Food Sci. Nutr. 2019;59:3371–3379. doi: 10.1080/10408398.2018.1492900.
    1. Hurtado-Barroso S., Quifer-Rada P., Rinaldi de Alvarenga J., Pérez-Fernández S., Tresserra-Rimbau A., Lamuela-Raventos R. Changing to a Low-Polyphenol Diet Alters Vascular Biomarkers in Healthy Men after Only Two Weeks. Nutrients. 2018;10:1766. doi: 10.3390/nu10111766.
    1. Mendonça R.D., Carvalho N.C., Martin-Moreno J.M., Pimenta A.M., Lopes A.C.S., Gea A., Martinez-Gonzalez M.A., Bes-Rastrollo M. Total polyphenol intake, polyphenol subtypes and incidence of cardiovascular disease: The SUN cohort study. Nutr. Metab. Cardiovasc. Dis. 2018;29:69–79. doi: 10.1016/j.numecd.2018.09.012.
    1. Schuster J., Mitchell E.S. More than just caffeine: Psychopharmacology of methylxanthine interactions with plant-derived phytochemicals. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2019;89:263–274. doi: 10.1016/j.pnpbp.2018.09.005.
    1. Sarubbo F., Moranta D., Pani G. Dietary polyphenols and neurogenesis: Molecular interactions and implication for brain ageing and cognition. Neurosci. Biobehav. Rev. 2018;90:456–470. doi: 10.1016/j.neubiorev.2018.05.011.
    1. Shukitt-Hale B., Miller M.G., Chu Y.-F., Lyle B.J., Joseph J.A. Coffee, but not caffeine, has positive effects on cognition and psychomotor behavior in aging. AGE. 2013;35:2183–2192. doi: 10.1007/s11357-012-9509-4.
    1. Whyte R.A., Cheng N., Fromentin E., Williams M.C. A Randomized, Double-Blinded, Placebo-Controlled Study to Compare the Safety and Efficacy of Low Dose Enhanced Wild Blueberry Powder and Wild Blueberry Extract (ThinkBlue™) in Maintenance of Episodic and Working Memory in Older Adults. Nutrients. 2018;10:660. doi: 10.3390/nu10060660.
    1. Heimbach J.T., Marone P.A., Hunter J.M., Nemzer B.V., Stanley S.M., Kennepohl E. Safety studies on products from whole coffee fruit. Food Chem. Toxicol. 2010;48:2517–2525. doi: 10.1016/j.fct.2010.06.025.
    1. Reyes-Izquierdo T., Nemzer B., Shu C., Huynh L., Argumedo R., Keller R., Pietrzkowski Z. Modulatory effect of coffee fruit extract on plasma levels of brain-derived neurotrophic factor in healthy subjects. Br. J. Nutr. 2013;110:420–425. doi: 10.1017/S0007114512005338.
    1. Reed R.A., Mitchell E.S., Saunders C., O’Connor P.J. Acute Low and Moderate Doses of a Caffeine-Free Polyphenol-Rich Coffeeberry Extract Improve Feelings of Alertness and Fatigue Resulting from the Performance of Fatiguing Cognitive Tasks. J. Cogn. Enhanc. 2019;3:193–206. doi: 10.1007/s41465-018-0118-8.
    1. Reyes-Izquierdo T., Argumedo R., Shu C., Nemzer B., Pietrzkowski Z. Stimulatory effect of whole coffee fruit concentrate powder on plasma levels of total and exosomal brain-derived neurotrophic factor in healthy subjects: An acute within-subject clinical study. Food Nutr. Sci. 2013;4:984–990. doi: 10.4236/fns.2013.49127.
    1. Abdel-Aziz K., Larner A.J. Six-item cognitive impairment test (6CIT): Pragmatic diagnostic accuracy study for dementia and MCI. Int. Psychogeriatr. 2015;27:991–997. doi: 10.1017/S1041610214002932.
    1. Glorioso C., Sabatini M., Unger T., Hashimoto T., Monteggia L.M., Lewis D.A., Mirnics K. Specificity and timing of neocortical transcriptome changes in response to BDNF gene ablation during embryogenesis or adulthood. [(accessed on 3 January 2019)];Mol. Psychiatry. 2006 11:633. doi: 10.1038/sj.mp.4001835. Available online: .
    1. Kohara K., Yasuda H., Huang Y., Adachi N., Sohya K., Tsumoto T. A Local Reduction in Cortical GABAergic Synapses after a Loss of Endogenous Brain-Derived Neurotrophic Factor, as Revealed by Single-Cell Gene Knock-Out Method. J. Neurosci. 2007;27:7234. doi: 10.1523/JNEUROSCI.1943-07.2007.
    1. Palizvan M.R., Sohya K., Kohara K., Maruyama A., Yasuda H., Kimura F., Tsumoto T. Brain-derived neurotrophic factor increases inhibitory synapses, revealed in solitary neurons cultured from rat visual cortex. Neuroscience. 2004;126:955–966. doi: 10.1016/j.neuroscience.2004.03.053.
    1. Wang L., Chang X., She L., Xu D., Huang W., Poo M.M. Autocrine Action of BDNF on Dendrite Development of Adult-Born Hippocampal Neurons. J. Neurosci. 2015;35:8384. doi: 10.1523/JNEUROSCI.4682-14.2015.
    1. Oh H., Piantadosi S.C., Rocco B.R., Lewis D.A., Watkins S.C., Sibille E. The Role of Dendritic Brain-Derived Neurotrophic Factor Transcripts on Altered Inhibitory Circuitry in Depression. Biol. Psychiatry. 2019;85:517–526. doi: 10.1016/j.biopsych.2018.09.026.
    1. Sun Z., Yu J., Liu Y.L., Hong Z., Ling L., Li G., Zhuo Y., Wang W., Zhang Y. Reduced Serum Levels of Brain-Derived Neurotrophic Factor Are Related to Mild Cognitive Impairment in Chinese Patients with Type 2 Diabetes Mellitus. Ann. Nutr. Metab. 2018;73:271–281. doi: 10.1159/000493275.
    1. Barha C.K., Liu-Ambrose T., Best J.R., Yaffe K., Rosano C. Sex-dependent effect of the BDNF Val66Met polymorphism on executive functioning and processing speed in older adults: Evidence from the health ABC study. Neurobiol. Aging. 2019;74:161–170. doi: 10.1016/j.neurobiolaging.2018.10.021.
    1. Kumar A., Dogra S., Sona C., Umrao D., Rashid M., Singh S.K., Wahajuddin M., Yadav P.N. Chronic histamine 3 receptor antagonism alleviates depression like conditions in mice via modulation of brain-derived neurotrophic factor and hypothalamus-pituitary adrenal axis. Psychoneuroendocrinology. 2019;101:128–137. doi: 10.1016/j.psyneuen.2018.11.007.
    1. Poulose S.M., Miller M.G., Scott T., Shukitt-Hale B. Nutritional Factors Affecting Adult Neurogenesis and Cognitive Function. Adv. Nutr. 2017;8:804–811. doi: 10.3945/an.117.016261.
    1. Barfoot K.L., May G., Lamport D.J., Ricketts J., Riddell P.M., Williams C.M. The effects of acute wild blueberry supplementation on the cognition of 7–10-year-old schoolchildren. Eur. J. Nutr. 2019;58:2911–2920. doi: 10.1007/s00394-018-1843-6.
    1. Jiang C., Sakakibara E., Lin W.-J., Wang J., Pasinetti G.M., Salton S.R. Grape-derived polyphenols produce antidepressant effects via VGF- and BDNF-dependent mechanisms. Ann. N. Y. Acad. Sci. 2019;1455:196–205. doi: 10.1111/nyas.14098.
    1. Caracci F., Harary J., Simkovic S., Pasinetti G.M. Grape-Derived Polyphenols Ameliorate Stress-Induced Depression by Regulating Synaptic Plasticity. J. Agric. Food Chem. 2020;68:1808–1815. doi: 10.1021/acs.jafc.9b01970.
    1. Qi G., Mi Y., Wang Y., Li R., Huang S., Li X., Liu X. Neuroprotective action of tea polyphenols on oxidative stress-induced apoptosis through the activation of the TrkB/CREB/BDNF pathway and Keap1/Nrf2 signaling pathway in SH-SY5Y cells and mice brain. Food Funct. 2017;8:4421–4432. doi: 10.1039/C7FO00991G.
    1. Moosavi F., Hosseini R., Saso L., Firuzi O. Modulation of neurotrophic signaling pathways by polyphenols. Drug Des. Dev. Ther. 2015;10:23–42. doi: 10.2147/DDDT.S96936.
    1. Nemzer B., Abshiru N., Al-Taher F. Identification of phytochemical compounds in coffea arabica whole coffee cherries and their extracts by LC-MS/MS. J. Agric. Food Chem. under review.
    1. Mullen W., Nemzer B., Stalmach A., Ali S., Combet E. Polyphenolic and Hydroxycinnamate Contents of Whole Coffee Fruits from China, India, and Mexico. J. Agric. Food Chem. 2013;61:5298–5309. doi: 10.1021/jf4003126.
    1. Li L., Su C., Chen X., Wang Q., Jiao W., Luo H., Tang J., Wang W., Li S., Guo S. Chlorogenic Acids in Cardiovascular Disease: A Review of Dietary Consumption, Pharmacology, and Pharmacokinetics. J. Agric. Food Chem. 2020;68:6464–6484. doi: 10.1021/acs.jafc.0c01554.
    1. Mullen W., Nemzer B., Ou B., Stalmach A., Hunter J., Clifford M.N., Combet E. The Antioxidant and Chlorogenic Acid Profiles of Whole Coffee Fruits Are Influenced by the Extraction Procedures. J. Agric. Food Chem. 2011;59:3754–3762. doi: 10.1021/jf200122m.
    1. Zheng T., Liu H., Qin L., Chen B., Zhang X., Hu X., Xiao L., Qin S. Oxidative stress-mediated influence of plasma DPP4 activity to BDNF ratio on mild cognitive impairment in elderly type 2 diabetic patients: Results from the GDMD study in China. Metab. Clin. Exp. 2018;87:105–112. doi: 10.1016/j.metabol.2018.03.014.
    1. Miranda M., Kent B.A., Morici J.F., Gallo F., Saksida L.M., Bussey T.J., Weisstaub N., Bekinschtein P. NMDA receptors and BDNF are necessary for discrimination of overlapping spatial and non-spatial memories in perirhinal cortex and hippocampus. Neurobiol. Learn. Mem. 2018;155:337–343. doi: 10.1016/j.nlm.2018.08.019.
    1. Niculescu D., Michaelsen-Preusse K., Güner Ü., van Dorland R., Wierenga C.J., Lohmann C. A BDNF-Mediated Push-Pull Plasticity Mechanism for Synaptic Clustering. Cell Rep. 2018;24:2063–2074. doi: 10.1016/j.celrep.2018.07.073.
    1. Zhen L., Shao T., Luria V., Li G., Li Z., Xu Y., Zhao X. EphB2 Deficiency Induces Depression-Like Behaviors and Memory Impairment: Involvement of NMDA 2B Receptor Dependent Signaling. Front. Pharmacol. 2018;9 doi: 10.3389/fphar.2018.00862.
    1. Robinson J.L., Hunter J.M., Reyes-Izquierdo T., Argumedo R., Brizuela-Bastien J., Keller R., Pietrzkowski Z. Cognitive short- and long-term effects of coffee cherry extract in older adults with mild cognitive decline. Aging Neuropsychol. Cogn. 2019;12:1–17. doi: 10.1080/13825585.2019.1702622.
    1. Zafra F., Castrén E., Thoenen H., Lindholm D. Interplay between glutamate and gamma-aminobutyric acid transmitter systems in the physiological regulation of brain-derived neurotrophic factor and nerve growth factor synthesis in hippocampal neurons. Proc. Natl. Acad. Sci. USA. 1991;88:10037. doi: 10.1073/pnas.88.22.10037.
    1. Yang X., Holmes M.J., Newton A.T., Morgan V.L., Landman B.A. A Comparison of Distributional Considerations with Statistical Analysis of Resting State fMRI at 3T and 7T. Proc. SPIE-Intern. Soc. Opt. Eng. 2012;8314:831416. doi: 10.1117/12.911307.
    1. Trattnig S., Springer E., Bogner W., Hangel G., Strasser B., Dymerska B., Cardoso P.L., Robinson S.D. Key clinical benefits of neuroimaging at 7T. NeuroImage. 2018;168:477–489. doi: 10.1016/j.neuroimage.2016.11.031.
    1. Pohmann R., Speck O., Scheffler K. Signal-to-noise ratio and MR tissue parameters in human brain imaging at 3, 7, and 9.4 tesla using current receive coil arrays. Magn. Reson. Med. 2016;75:801–809. doi: 10.1002/mrm.25677.
    1. Reid M.A., Salibi N., White D.M., Gawne T.J., Denney T.S., Lahti A.C. 7T Proton Magnetic Resonance Spectroscopy of the Anterior Cingulate Cortex in First-Episode Schizophrenia. Schizophr. Bull. 2018;45:180–189. doi: 10.1093/schbul/sbx190.
    1. Strasser A., Xin L., Gruetter R., Sandi C. Nucleus accumbens neurochemistry in human anxiety: A 7 T 1H-MRS study. Eur. Neuropsychopharmacol. 2019;29:365–375. doi: 10.1016/j.euroneuro.2018.12.015.
    1. Gordon E.M., Laumann T.O., Adeyemo B., Gilmore A.W., Nelson S.M., Dosenbach N.U.F., Petersen S.E. Individual-specific features of brain systems identified with resting state functional correlations. NeuroImage. 2017;146:918–939. doi: 10.1016/j.neuroimage.2016.08.032.
    1. Gordon E.M., Laumann T.O., Adeyemo B., Petersen S.E. Individual Variability of the System-Level Organization of the Human Brain. Cereb. Cortex. 2015;27:386–399. doi: 10.1093/cercor/bhv239.
    1. Gordon E.M., Laumann T.O., Gilmore A.W., Newbold D.J., Greene D.J., Berg J.J., Ortega M., Hoyt-Drazen C., Gratton C., Sun H., et al. Precision Functional Mapping of Individual Human Brains. Neuron. 2017;95:791–807.e797. doi: 10.1016/j.neuron.2017.07.011.
    1. Laumann T.O., Gordon E.M., Adeyemo B., Snyder A.Z., Joo S.J., Chen M.-Y., Gilmore A.W., McDermott K.B., Nelson S.M., Dosenbach N.U.F., et al. Functional System and Areal Organization of a Highly Sampled Individual Human Brain. Neuron. 2015;87:657–670. doi: 10.1016/j.neuron.2015.06.037.
    1. Poldrack R.A. Precision Neuroscience: Dense Sampling of Individual Brains. Neuron. 2017;95:727–729. doi: 10.1016/j.neuron.2017.08.002.
    1. Braga R.M., Buckner R.L. Parallel Interdigitated Distributed Networks within the Individual Estimated by Intrinsic Functional Connectivity. Neuron. 2017;95:457–471.e455. doi: 10.1016/j.neuron.2017.06.038.
    1. Feilong M., Nastase S.A., Guntupalli J.S., Haxby J.V. Reliable individual differences in fine-grained cortical functional architecture. NeuroImage. 2018;183:375–386. doi: 10.1016/j.neuroimage.2018.08.029.
    1. Gagnier J.J., Boon H., Rochon P., Moher D., Barnes J., Bombardier C. Reporting Randomized, Controlled Trials of Herbal Interventions: An Elaborated CONSORT Statement. Ann. Int. Med. 2006;144:364–367. doi: 10.7326/0003-4819-144-5-200603070-00013.
    1. Wechsler D. Wechsler Memory Scale. 4th ed. Pearson Assessment; San Antonio, TX, USA: 2009.
    1. Folstein M.F., Folstein S.E., McHugh P.R. “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975;12:189–198. doi: 10.1016/0022-3956(75)90026-6.
    1. Rovner B.W., Folstein M.F. Mini-mental state exam in clinical practice. Hosp. Pract. 1987;22:140–141.
    1. Hughes C.P., Berg L., Danziger W.L., Coben L.A., Martin R.L. A new clinical scale for the staging of dementia. Br. J. Psychiatry. 1982;140:566–572. doi: 10.1192/bjp.140.6.566.
    1. Lynch C.A., Walsh C., Blanco A., Moran M., Coen R.F., Walsh J.B., Lawlor B.A. The clinical dementia rating sum of box score in mild dementia. Dement. Geriatr. Cogn. Disord. 2006;21:40–43. doi: 10.1159/000089218.
    1. Santos-Buelga C., González-Paramás A.M., Oludemi T., Ayuda-Durán B., González-Manzano S. Plant phenolics as functional food ingredients. Adv. Food Nutr. Res. 2019;90:183–257.
    1. Lavefve L., Howard L.R., Carbonero F. Berry polyphenols metabolism and impact on human gut microbiota and health. Food Funct. 2020;11:45–65. doi: 10.1039/C9FO01634A.
    1. Hussain M.B., Hassan S., Waheed M., Javed A., Farooq M.A., Tahir A. Bioavailability and Metabolic Pathway of Phenolic Compounds. In: Soto-Hernández M., García-Mateos R., Palma-Tenango M., editors. Plant Physiological Aspects of Phenolic Compounds. InTechOpen; London, UK: 2019.
    1. Rubia K., Smith A.B., Brammer M.J., Taylor E. Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. Neuroimage. 2003;20:351–358. doi: 10.1016/S1053-8119(03)00275-1.
    1. Braver T.S., Barch D.M., Gray J.R., Molfese D.L., Snyder A. Anterior cingulate cortex and response conflict: Effects of frequency, inhibition and errors. Cereb Cortex. 2001;11:825–836. doi: 10.1093/cercor/11.9.825.
    1. Rubia K., Russell T., Bullmore E.T., Soni W., Brammer M.J., Simmons A., Taylor E., Andrew C., Giampietro V., Sharma T. An fMRI study of reduced left prefrontal activation in schizophrenia during normal inhibitory function. Schizophr. Res. 2001;52:47–55. doi: 10.1016/S0920-9964(00)00173-0.
    1. Shibata T., Shimoyama I., Ito T., Abla D., Iwasa H., Koseki K., Yamanouchi N., Sato T., Nakajima Y. The time course of interhemispheric EEG coherence during a GO/NO-GO task in humans. Neurosci. Lett. 1997;233:117–120. doi: 10.1016/S0304-3940(97)00652-6.
    1. Roberts L.E., Rau H., Lutzenberger W., Birbaumer N. Mapping P300 waves onto inhibition: Go/No-Go discrimination. Electroencephalogr. Clin. Neurophysiol. Evoked Potential. 1994;92:44–45. doi: 10.1016/0168-5597(94)90006-X.
    1. Menon V., Adleman N.E., White C.D., Glover G.H., Reiss A.L. Error-related brain activation during a Go/NoGo response inhibition task. Hum. Br. Mapp. 2001;12:131–143. doi: 10.1002/1097-0193(200103)12:3<131::AID-HBM1010>;2-C.
    1. Swick D., Ashley V., Turken U. Are the neural correlates of stopping and not going identical? Quantitative meta-analysis of two response inhibition tasks. NeuroImage. 2011;56:1655–1665. doi: 10.1016/j.neuroimage.2011.02.070.
    1. Mencarelli L., Neri F., Momi D., Menardi A., Rossi S., Rossi A., Santarnecchi E. Stimuli, presentation modality, and load-specific brain activity patterns during n-back task. Hum. Br. Mapp. 2019;40:3810–3831. doi: 10.1002/hbm.24633.
    1. Wang H., He W., Wu J., Zhang J., Jin Z., Li L. A coordinate-based meta-analysis of the n-back working memory paradigm using activation likelihood estimation. Br. Cogn. 2019;132:1–12. doi: 10.1016/j.bandc.2019.01.002.
    1. Ou B., Hampsch-Woodill M., Flanagan J., Deemer E.K., Prior R.L., Huang D. Novel Fluorometric Assay for Hydroxyl Radical Prevention Capacity Using Fluorescein as the Probe. J. Agric. Food Chem. 2002;50:2772–2777. doi: 10.1021/jf011480w.
    1. Huang D., Ou B., Hampsch-Woodill M., Flanagan J.A., Prior R.L. High-Throughput Assay of Oxygen Radical Absorbance Capacity (ORAC) Using a Multichannel Liquid Handling System Coupled with a Microplate Fluorescence Reader in 96-Well Format. J. Agric. Food Chem. 2002;50:4437–4444. doi: 10.1021/jf0201529.
    1. Chung H.Y., Choi H.R., Park H.J., Choi J.S., Choi W.C. Peroxynitrite Scavenging and Cytoprotective Activity of 2,3,6-Tribromo-4,5-dihydroxybenzyl Methyl Ether from the Marine Alga Symphyocladia latiuscula. J. Agric. Food Chem. 2001;49:3614–3621. doi: 10.1021/jf0101206.
    1. Zhang L., Huang D., Kondo M., Fan E., Ji H., Kou Y., Ou B. Novel High-Throughput Assay for Antioxidant Capacity against Superoxide Anion. J. Agric. Food Chem. 2009;57:2661–2667. doi: 10.1021/jf8033368.
    1. Jenkinson M., Beckmann C.F., Behrens T.E.J., Woolrich M.W., Smith S.M. FSL. NeuroImage. 2012;62:782–790. doi: 10.1016/j.neuroimage.2011.09.015.
    1. Smith S.M., Jenkinson M., Woolrich M.W., Beckmann C.F., Behrens T.E., Johansen-Berg H., Bannister P.R., De Luca M., Drobnjak I., Flitney D.E., et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23 doi: 10.1016/j.neuroimage.2004.07.051.
    1. Jenkinson M., Bannister P.R., Brady J.M., Smith S.M. Improved optimisation for the robust and accurate linear registration and motion correction of brain images. NeuroImage. 2002;17:825–841. doi: 10.1006/nimg.2002.1132.
    1. Jenkinson M., Smith S.M. A global optimisation method for robust affine registration of brain images. Med. Image Anal. 2001;5:143–156. doi: 10.1016/S1361-8415(01)00036-6.
    1. Woolrich M.W., Ripley B.D., Ripley J.M., Smith S.M. Temporal autocorrelation in univariate linear modeling of fMRI data. NeuroImage. 2001;14:1370–1386. doi: 10.1006/nimg.2001.0931.
    1. Worsley K.J. Statistical analysis of activation images. In: Jezzard P., Matthews P.M., Smith S.M., editors. Functional MRI: An Introduction to Methods. OUP; Cary, NC, USA: 2001.
    1. Whitfield-Gabrieli S., Nieto-Castanon A. Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Br. Connect. 2012;2:125–141. doi: 10.1089/brain.2012.0073.
    1. Statistical Parametric Mapping. [(accessed on 3 January 2019)]; Available online: .
    1. Provencher S.W. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn. Reson. Med. 1993;30:672–679. doi: 10.1002/mrm.1910300604.
    1. Kreis R. The trouble with quality filtering based on relative Cramér-Rao lower bounds. Magn. Reson. Med. 2016;75:15–18. doi: 10.1002/mrm.25568.
    1. Gasparovic C., Song T., Devier D., Bockholt H.J., Caprihan A., Mullins P.G., Posse S., Jung R.E., Morrison L.A. Use of tissue water as a concentration reference for proton spectroscopic imaging. Magn. Reson. Med. 2006;55:1219–1226. doi: 10.1002/mrm.20901.
    1. Han X., Shen T., Lou H. Dietary Polyphenols and Their Biological Significance. Int. J. Mol. Sci. 2007;8:950–988. doi: 10.3390/i8090950.
    1. Henneberger C., Jüttner R., Rothe T., Grantyn R. Postsynaptic Action of BDNF on GABAergic Synaptic Transmission in the Superficial Layers of the Mouse Superior Colliculus. J. Neurophysiol. 2002;88:595–603. doi: 10.1152/jn.2002.88.2.595.
    1. Newsholme P., Procopio J., Lima M.M., Pithon-Curi T.C., Curi R. Glutamine and glutamate—Their central role in cell metabolism and function. Cell Biochem. Funct. 2003;21:1–9. doi: 10.1002/cbf.1003.
    1. Watford M. Glutamine and glutamate: Nonessential or essential amino acids? Anim. Nutr. 2015;1:119–122. doi: 10.1016/j.aninu.2015.08.008.
    1. Shen J. Modeling the glutamate–glutamine neurotransmitter cycle. Front. Neuroenerg. 2013;5 doi: 10.3389/fnene.2013.00001.
    1. Strużyńska L., Sulkowski G. Relationships between glutamine, glutamate, and GABA in nerve endings under Pb-toxicity conditions. J. Inorg. Biochem. 2004;98:951–958. doi: 10.1016/j.jinorgbio.2004.02.010.
    1. Al-Otaish H., Al-Ayadhi L., Bjørklund G., Chirumbolo S., Urbina M.A., El-Ansary A. Relationship between absolute and relative ratios of glutamate, glutamine and GABA and severity of autism spectrum disorder. Metab. Br. Dis. 2018;33:843–854. doi: 10.1007/s11011-018-0186-6.
    1. Huang D., Liu D., Yin J., Qian T., Shrestha S., Ni H. Glutamate-glutamine and GABA in brain of normal aged and patients with cognitive impairment. Eur. Radiol. 2017;27:2698–2705. doi: 10.1007/s00330-016-4669-8.
    1. Liguz-Lecznar M., Lehner M., Kaliszewska A., Zakrzewska R., Sobolewska A., Kossut M. Altered glutamate/GABA equilibrium in aged mice cortex influences cortical plasticity. Br. Struct. Funct. 2015;220:1681–1693. doi: 10.1007/s00429-014-0752-6.
    1. Niu X., Zheng S., Liu H., Li S. Protective effects of taurine against inflammation, apoptosis, and oxidative stress in brain injury. Mol. Med. Rep. 2018;18:4516–4522. doi: 10.3892/mmr.2018.9465.
    1. Seidel U., Huebbe P., Rimbach G. Taurine: A Regulator of Cellular Redox Homeostasis and Skeletal Muscle Function. Mol. Nutr. Food Res. 2018;63:1800569. doi: 10.1002/mnfr.201800569.

Source: PubMed

3
Subscribe