Prediction of hypotension after postural change in robot-assisted laparoscopic prostatectomy using esophageal Doppler monitoring: a prospective observational trial

Na Young Kim, Ki Jun Kim, Tae Lim Kim, Hye Jung Shin, Chaerim Oh, Min Huiy Lee, Ji Young Min, So Yeon Kim, Na Young Kim, Ki Jun Kim, Tae Lim Kim, Hye Jung Shin, Chaerim Oh, Min Huiy Lee, Ji Young Min, So Yeon Kim

Abstract

Postural change from a steep Trendelenburg position to a supine position (T-off) during robot-assisted laparoscopic prostatectomy (RALP) induces a considerable abrupt decrease in the mean arterial pressure (MAP). We investigated the variables for predicting postural hypotension induced by T-off using esophageal Doppler monitoring (EDM). One hundred and twenty-five patients undergoing RALP were enrolled. Data on the MAP, heart rate, stroke volume index (SVI), cardiac index, peak velocity, corrected flow time, stroke volume variation, pulse pressure variation, arterial elastance (Ea), and dynamic arterial elastance were collected before T-off and at 1, 3, 5, 7, and 10 min after T-off using EDM. MAP < 60 mmHg within 10 min after T-off was considered to indicate hypotension, and 25 patients developed hypotension. The areas under the curves of the MAP, SVI, and Ea were 0.734 (95% confidence interval [CI] 0.623-0.846; P < 0.001), 0.712 (95% CI 0.598-0.825; P < 0.001), and 0.760 (95% CI 0.646-0.875; P < 0.001), respectively, with threshold values of ≤ 74 mmHg, ≥ 42.5 mL/m2, and ≤ 1.08 mmHg/mL, respectively. If patients have MAP < 75 mmHg with SVI ≥ 42.5 mL/m2 or Ea ≤ 1.08 mmHg/mL before postural change from T-off during RALP, prompt management for ensuing hypotension should be considered.Trial registration: NCT03882697 (ClinicalTrial.gov, March 20, 2019).

Conflict of interest statement

The authors declare no competing interests.

© 2021. The Author(s).

Figures

Figure 1
Figure 1
CONSORT flow diagram.
Figure 2
Figure 2
Areas under the receiver operating characteristics curves (AUCs) of each index for predicting hypotension after postural change from the Trendelenburg position to the supine position. CI confidence interval; MAP mean arterial pressure; SVI stroke volume index; Ea arterial elastance.

References

    1. Novara G, et al. Systematic review and meta-analysis of perioperative outcomes and complications after robot-assisted radical prostatectomy. Eur. Urol. 2012;62:431–452. doi: 10.1016/j.eururo.2012.05.044.
    1. Leow JJ, et al. Robot-assisted versus open radical prostatectomy: A contemporary analysis of an all-payer discharge database. Eur. Urol. 2016;70:837–845. doi: 10.1016/j.eururo.2016.01.044.
    1. Lestar M, Gunnarsson L, Lagerstrand L, Wiklund P, Odeberg-Wernerman S. Hemodynamic perturbations during robot-assisted laparoscopic radical prostatectomy in 45° Trendelenburg position. Anesth. Analg. 2011;113:1069–1075. doi: 10.1213/ANE.0b013e3182075d1f.
    1. Rosendal C, Markin S, Hien MD, Motsch J, Roggenbach J. Cardiac and hemodynamic consequences during capnoperitoneum and steep Trendelenburg positioning: lessons learned from robot-assisted laparoscopic prostatectomy. J. Clin. Anesth. 2014;26:383–389. doi: 10.1016/j.jclinane.2014.01.014.
    1. Pawlik MT, et al. Pronounced haemodynamic changes during and after robotic-assisted laparoscopic prostatectomy: a prospective observational study. BMJ Open. 2020;10:e038045. doi: 10.1136/bmjopen-2020-038045.
    1. Jo YY, Jung WS, Kim HS, Chang YJ, Kwak HJ. Prediction of hypotension in the beach chair position during shoulder arthroscopy using pre-operative hemodynamic variables. J. Clin. Monit. Comput. 2014;28:173–178. doi: 10.1007/s10877-013-9512-z.
    1. Goswami N, Blaber AP, Hinghofer-Szalkay H, Montani J-P. Orthostatic intolerance in older persons: Etiology and countermeasures. Front. Physiol. 2017;8:803–803. doi: 10.3389/fphys.2017.00803.
    1. Uchmanowicz I, Chudiak A, Jankowska-Polańska B, Gobbens R. Hypertension and frailty syndrome in old age: Current perspectives. Card. Fail. Rev. 2017;3:102–107. doi: 10.15420/cfr.2017:9:2.
    1. Schober P, Loer SA, Schwarte LA. Perioperative hemodynamic monitoring with transesophageal Doppler technology. Anesth. Analg. 2009;109:340–353. doi: 10.1213/ane.0b013e3181aa0af3.
    1. King SL, Lim MS. The use of the oesophageal Doppler monitor in the intensive care unit. Crit. Care Resusc. 2004;6:113–122.
    1. Atkinson TM, Giraud GD, Togioka BM, Jones DB, Cigarroa JE. Cardiovascular and ventilatory consequences of laparoscopic surgery. Circulation. 2017;135:700–710. doi: 10.1161/CIRCULATIONAHA.116.023262.
    1. Wesselink EM, Kappen TH, Torn HM, Slooter AJC, van Klei WA. Intraoperative hypotension and the risk of postoperative adverse outcomes: a systematic review. Br. J. Anaesth. 2018;121:706–721. doi: 10.1016/j.bja.2018.04.036.
    1. Jor O, et al. Hypotension after induction of general anesthesia: occurrence, risk factors, and therapy. A prospective multicentre observational study. J. Anesth. 2018;32:673–680. doi: 10.1007/s00540-018-2532-6.
    1. García MIM, Cano AG, Romero MG. Dynamic arterial elastance to predict arterial pressure response to volume loading in preload-dependent patients. Crit. Care. 2011;15:R15. doi: 10.1186/cc9420.
    1. Guarracino F, Baldassarri R, Pinsky MR. Ventriculo-arterial decoupling in acutely altered hemodynamic states. Crit. Care. 2013;17:213. doi: 10.1186/cc12522.
    1. Bond O, et al. Relationship between microcirculatory perfusion and arterial elastance: A pilot study. Crit. Care Res. Pract. 2019;2019:3256313.
    1. Abou Arab O, et al. Etomidate-induced hypotension: A pathophysiological approach using arterial elastance. Anaesth. Crit. Care Pain Med. 2019;38:347–352. doi: 10.1016/j.accpm.2018.12.006.
    1. Vallée F, et al. Norepinephrine reduces arterial compliance less than phenylephrine when treating general anesthesia-induced arterial hypotension. Acta Anaesthesiol. Scand. 2017;61:590–600. doi: 10.1111/aas.12905.
    1. Lamontagne F, et al. Effect of reduced exposure to vasopressors on 90-day mortality in older critically ill patients with vasodilatory hypotension: A randomized clinical trial. JAMA. 2020;323:938–949. doi: 10.1001/jama.2020.0930.

Source: PubMed

3
Subscribe