Effect of Positive End-Expiratory Pressure on the Sonographic Optic Nerve Sheath Diameter as a Surrogate for Intracranial Pressure during Robot-Assisted Laparoscopic Prostatectomy: A Randomized Controlled Trial

Ji-Hyun Chin, Wook-Jong Kim, Joonho Lee, Yun A Han, Jinwook Lim, Jai-Hyun Hwang, Seong-Sik Cho, Young-Kug Kim, Ji-Hyun Chin, Wook-Jong Kim, Joonho Lee, Yun A Han, Jinwook Lim, Jai-Hyun Hwang, Seong-Sik Cho, Young-Kug Kim

Abstract

Background: Positive end-expiratory pressure (PEEP) can increase intracranial pressure. Pneumoperitoneum and the Trendelenburg position are associated with an increased intracranial pressure. We investigated whether PEEP ventilation could additionally influence the sonographic optic nerve sheath diameter as a surrogate for intracranial pressure during pneumoperitoneum combined with the Trendelenburg position in patients undergoing robot-assisted laparoscopic prostatectomy.

Methods: After anesthetic induction, 38 patients were randomly allocated to a low tidal volume ventilation (8 ml/kg) without PEEP group (zero end-expiratory pressure [ZEEP] group, n = 19) or low tidal volume ventilation with 8 cmH2O PEEP group (PEEP group, n = 19). The sonographic optic nerve sheath diameter was measured prior to skin incision, 5 min and 30 min after pneumoperitoneum and the Trendelenburg position, and at the end of surgery. The study endpoint was the difference in the sonographic optic nerve sheath diameter 5 min after pneumoperitoneum and the Trendelenburg position between the ZEEP and PEEP groups.

Results: Optic nerve sheath diameters 5 min after pneumoperitoneum and the Trendelenburg position did not significantly differ between the groups [least square mean (95% confidence interval); 4.8 (4.6-4.9) mm vs 4.8 (4.7-5.0) mm, P = 0.618]. Optic nerve sheath diameters 30 min after pneumoperitoneum and the Trendelenburg position also did not differ between the groups [least square mean (95% confidence interval); 4.5 (4.3-4.6) mm vs 4.5 (4.4-4.6) mm, P = 0.733].

Conclusions: An 8 cmH2O PEEP application under low tidal volume ventilation does not induce an increase in the optic nerve sheath diameter during pneumoperitoneum combined with the steep Trendelenburg position, suggesting that there might be no detrimental effects of PEEP on the intracranial pressure during robot-assisted laparoscopic prostatectomy.

Trial registration: ClinicalTrial.gov NCT02516566.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Study flow diagram.
Fig 1. Study flow diagram.
Patients in the zero end-expiratory pressure (ZEEP) group received mechanical ventilation with a tidal volume 8 ml/kg of ideal body weight without positive end-expiratory pressure (PEEP), and those in PEEP group received mechanical ventilation with a tidal volume 8 ml/kg of ideal body weight with 8 cmH2O PEEP.
Fig 2. Changes in ONSD in the…
Fig 2. Changes in ONSD in the ZEEP group (blue circle) and PEEP group (red circle) during robot-assisted laparoscopic prostatectomy.
Note that the ONSDs during pneumoperitoneum and the Trendelenburg position (T2 and T3) do not significantly differ between the ZEEP and PEEP groups, whereas the ONSD in the PEEP group is significantly higher than that in the ZEEP group during the supine position without pneumoperitoneum (T1). Circles and bars indicate least square means and 95% confidence intervals, respectively. ONSD = optic nerve sheath diameter; ZEEP group = zero end-expiratory pressure with low tidal volume ventilation; PEEP group = positive end-expiratory pressure with low tidal volume ventilation; T0 = 10 min after anesthetic induction in the supine position before random allocation; T1 = 5 min after applying ventilation strategies according to a random allocation; T2 = 5 min after establishing pneumoperitoneum and the steep Trendelenburg position; T3 = 30 min after establishing pneumoperitoneum and the steep Trendelenburg position; T4 = at the end of surgery after desufflation of pneumoperitoneum in the supine position.

References

    1. Danic MJ, Chow M, Alexander G, Bhandari A, Menon M, Brown M. Anesthesia considerations for robotic-assisted laparoscopic prostatectomy: a review of 1,500 cases. J Robot Surg. 2007; 1: 119–123. 10.1007/s11701-007-0024-z
    1. Futier E, Constantin JM, Paugam-Burtz C, Pascal J, Eurin M, Neuschwander A, et al. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med. 2013; 369: 428–437. 10.1056/NEJMoa1301082
    1. Severgnini P, Selmo G, Lanza C, Chiesa A, Frigerio A, Bacuzzi A, et al. Protective mechanical ventilation during general anesthesia for open abdominal surgery improves postoperative pulmonary function. Anesthesiology. 2013; 118: 1307–1321. 10.1097/ALN.0b013e31829102de
    1. McGuire G, Crossley D, Richards J, Wong D. Effects of varying levels of positive end-expiratory pressure on intracranial pressure and cerebral perfusion pressure. Crit Care Med. 1997; 25: 1059–1062.
    1. Chin JH, Seo H, Lee EH, Lee J, Hong JH, Hwang JH, et al. Sonographic optic nerve sheath diameter as a surrogate measure for intracranial pressure in anesthetized patients in the Trendelenburg position. BMC Anesthesiol. 2015; 15: 43 10.1186/s12871-015-0025-9
    1. Kim MS, Bai SJ, Lee JR, Choi YD, Kim YJ, Choi SH. Increase in intracranial pressure during carbon dioxide pneumoperitoneum with steep trendelenburg positioning proven by ultrasonographic measurement of optic nerve sheath diameter. J Endourol. 2014; 28: 801–806. 10.1089/end.2014.0019
    1. Pulitano S, Mancino A, Pietrini D, Piastra M, De Rosa S, Tosi F, et al. Effects of positive end expiratory pressure (PEEP) on intracranial and cerebral perfusion pressure in pediatric neurosurgical patients. J Neurosurg Anesthesiol. 2013; 25: 330–334. 10.1097/ANA.0b013e31828bac4d
    1. Moretti R, Pizzi B. Optic nerve ultrasound for detection of intracranial hypertension in intracranial hemorrhage patients: confirmation of previous findings in a different patient population. J Neurosurg Anesthesiol. 2009; 21: 16–20. 10.1097/ANA.0b013e318185996a
    1. Moretti R, Pizzi B, Cassini F, Vivaldi N. Reliability of optic nerve ultrasound for the evaluation of patients with spontaneous intracranial hemorrhage. Neurocrit Care. 2009; 11: 406–410. 10.1007/s12028-009-9250-8
    1. Georgiadis D, Schwarz S, Baumgartner RW, Veltkamp R, Schwab S. Influence of positive end-expiratory pressure on intracranial pressure and cerebral perfusion pressure in patients with acute stroke. Stroke. 2001; 32: 2088–2092.
    1. Muench E, Bauhuf C, Roth H, Horn P, Phillips M, Marquetant N, et al. Effects of positive end-expiratory pressure on regional cerebral blood flow, intracranial pressure, and brain tissue oxygenation. Crit Care Med. 2005; 33: 2367–2372.
    1. Gainsburg DM. Anesthetic concerns for robotic-assisted laparoscopic radical prostatectomy. Minerva Anestesiol. 2012; 78: 596–604.
    1. Verdonck P, Kalmar AF, Suy K, Geeraerts T, Vercauteren M, Mottrie A, et al. Optic nerve sheath diameter remains constant during robot assisted laparoscopic radical prostatectomy. PLoS One. 2014; 9: e111916 10.1371/journal.pone.0111916
    1. Whiteley JR, Taylor J, Henry M, Epperson TI, Hand WR. Detection of elevated intracranial pressure in robot-assisted laparoscopic radical prostatectomy using ultrasonography of optic nerve sheath diameter. J Neurosurg Anesthesiol. 2015; 27: 155–159. 10.1097/ANA.0000000000000106
    1. Guerci AD, Shi AY, Levin H, Tsitlik J, Weisfeldt ML, Chandra N. Transmission of intrathoracic pressure to the intracranial space during cardiopulmonary resuscitation in dogs. Circ Res. 1985; 56: 20–30.
    1. Fahy BG, Barnas GM, Nagle SE, Flowers JL, Njoku MJ, Agarwal M. Effects of Trendelenburg and reverse Trendelenburg postures on lung and chest wall mechanics. J Clin Anesth. 1996; 8: 236–244.
    1. Luce JM, Huseby JS, Kirk W, Butler J. A Starling resistor regulates cerebral venous outflow in dogs. J Appl Physiol Respir Environ Exerc Physiol. 1982; 53: 1496–1503.
    1. Caricato A, Conti G, Della Corte F, Mancino A, Santilli F, Sandroni C, et al. Effects of PEEP on the intracranial system of patients with head injury and subarachnoid hemorrhage: the role of respiratory system compliance. J Trauma. 2005; 58: 571–576.
    1. Kimberly HH, Shah S, Marill K, Noble V. Correlation of optic nerve sheath diameter with direct measurement of intracranial pressure. Acad Emerg Med. 2008; 15: 201–204. 10.1111/j.1553-2712.2007.00031.x

Source: PubMed

3
Subscribe