Dysfunction of attention switching networks in amyotrophic lateral sclerosis

Roisin McMackin, Stefan Dukic, Michael Broderick, Parameswaran M Iyer, Marta Pinto-Grau, Kieran Mohr, Rangariroyashe Chipika, Amina Coffey, Teresa Buxo, Christina Schuster, Brighid Gavin, Mark Heverin, Peter Bede, Niall Pender, Edmund C Lalor, Muthuraman Muthuraman, Orla Hardiman, Bahman Nasseroleslami, Roisin McMackin, Stefan Dukic, Michael Broderick, Parameswaran M Iyer, Marta Pinto-Grau, Kieran Mohr, Rangariroyashe Chipika, Amina Coffey, Teresa Buxo, Christina Schuster, Brighid Gavin, Mark Heverin, Peter Bede, Niall Pender, Edmund C Lalor, Muthuraman Muthuraman, Orla Hardiman, Bahman Nasseroleslami

Abstract

Objective: To localise and characterise changes in cognitive networks in Amyotrophic Lateral Sclerosis (ALS) using source analysis of mismatch negativity (MMN) waveforms.

Rationale: The MMN waveform has an increased average delay in ALS. MMN has been attributed to change detection and involuntary attention switching. This therefore indicates pathological impairment of the neural network components which generate these functions. Source localisation can mitigate the poor spatial resolution of sensor-level EEG analysis by associating the sensor-level signals to the contributing brain sources. The functional activity in each generating source can therefore be individually measured and investigated as a quantitative biomarker of impairment in ALS or its sub-phenotypes.

Methods: MMN responses from 128-channel electroencephalography (EEG) recordings in 58 ALS patients and 39 healthy controls were localised to source by three separate localisation methods, including beamforming, dipole fitting and exact low resolution brain electromagnetic tomography.

Results: Compared with controls, ALS patients showed significant increase in power of the left posterior parietal, central and dorsolateral prefrontal cortices (false discovery rate = 0.1). This change correlated with impaired cognitive flexibility (rho = 0.45, 0.45, 0.47, p = .042, .055, .031 respectively). ALS patients also exhibited a decrease in the power of dipoles representing activity in the inferior frontal (left: p = 5.16 × 10-6, right: p = 1.07 × 10-5) and left superior temporal gyri (p = 9.30 × 10-6). These patterns were detected across three source localisation methods. Decrease in right inferior frontal gyrus activity was a good discriminator of ALS patients from controls (AUROC = 0.77) and an excellent discriminator of C9ORF72 expansion-positive patients from controls (AUROC = 0.95).

Interpretation: Source localization of evoked potentials can reliably discriminate patterns of functional network impairment in ALS and ALS subgroups during involuntary attention switching. The discriminative ability of the detected cognitive changes in specific brain regions are comparable to those of functional magnetic resonance imaging (fMRI). Source analysis of high-density EEG patterns has excellent potential to provide non-invasive, data-driven quantitative biomarkers of network disruption that could be harnessed as novel neurophysiology-based outcome measures in clinical trials.

Keywords: Amyotrophic lateral sclerosis; Cognition; EEG; Mismatch negativity; Network; Source localisation.

Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.

Figures

Fig. 1
Fig. 1
Location of dipoles modelled by dipole fitting. Centroids of the left (blue) and right (orange) superior temporal gyri and left (red) and right (green) inferior frontal pars triangularis were used to seed dipoles for dipole fitting. Axial MRI view is from above (L-Left, R-Right).
Fig. 2
Fig. 2
ALS patients show decreased power in both inferior frontal gyri and the left superior temporal gyrus. Boxes illustrate the interquartile range with whiskers illustrating the maximum and minimum power (A-m) within twice the interquartile range for ALS patients (P) and controls (C), determined by dipole fitting. Outliers are illustrated in black. Dashed line caps up to two outliers beyond this value. L – Left, R – Right, IFG – Inferior frontal gyrus, STG – Superior Temporal Gyrus.
Fig. 3
Fig. 3
ELORETA identified a pattern of decreased activity in the left superior temporal and inferior frontal sources, and an increase in activity in posterior areas. Location of MMN sources with (a) top 50% of power (10*log10(Deviant power / Standard power)) in healthy controls and (b) power differences >25% of maximum between ALS patients and healthy controls as determined by eLORETA. Red denotes increase in power, blue denotes decrease in power. Axial MRI views are from above (L-Left, R-Right).
Fig. 4
Fig. 4
LCMV identified a pattern of decreased activity in bilateral superior temporal and inferior frontal sources, and an increase in activity in the left hemisphere. Location of MMN sources with (a) top 25% of power (10*log10(Deviant power / Standard power)) in healthy controls and (b) power differences >25% of maximum between ALS patients and healthy controls as determined by LCMV beamforming. Red denotes increase in power, blue denotes decrease in power. Axial MRI views are from above (L-Left, R-Right).
Fig. 5
Fig. 5
Increased activity in the left posterior parietal, central and dorsolateral prefrontal cortex in ALS is statistically significant. Statistically significant (false discovery rate = 10%) differences in power between ALS patients and healthy controls as determined by LCMV. Heat map values are AUROC-0.5. Red denotes AUROC>0.5, blue denotes decrease in AUROC

Fig. 6

Increased activity in the posterior…

Fig. 6

Increased activity in the posterior parietal and dorsolateral prefrontal cortex correlates to poorer…

Fig. 6
Increased activity in the posterior parietal and dorsolateral prefrontal cortex correlates to poorer performance in cognitive switching tasks. Correlation of inhibition/switching score (in seconds) for 27 patients with mean power in the left primary motor cortex (red), posterior parietal cortex (PPC, green), and middle and superior frontal gyri (M/SFG, blue) illustrated by scatterplot with line of best fit.
Fig. 6
Fig. 6
Increased activity in the posterior parietal and dorsolateral prefrontal cortex correlates to poorer performance in cognitive switching tasks. Correlation of inhibition/switching score (in seconds) for 27 patients with mean power in the left primary motor cortex (red), posterior parietal cortex (PPC, green), and middle and superior frontal gyri (M/SFG, blue) illustrated by scatterplot with line of best fit.

References

    1. Agosta F., Canu E., Valsasina P., Riva N., Prelle A., Comi G., Filippi M. Divergent brain network connectivity in amyotrophic lateral sclerosis. Neurobiol. Aging. 2013;34:419–427.
    1. Alho K. Cerebral generators of mismatch negativity (MMN) and its magnetic counterpart (MMNm) elicited by sound changes. Ear Hear. 1995;16:38–51.
    1. Alho K., Woods D.L., Algazi A., Knight R.T., Näätänen R. Lesions of frontal cortex diminish the auditory mismatch negativity. Electroencephalogr. Clin. Neurophysiol. 1994;91:353–362.
    1. Beaty R.E., Benedek M., Wilkins R.W., Jauk E., Fink A., Silvia P.J., Hodges D.A., Koschutnig K., Neubauer A.C. Creativity and the default network: a functional connectivity analysis of the creative brain at rest. Neuropsychologia. 2014;64:92–98.
    1. Bede P., Elamin M., Byrne S., McLaughlin R.L., Kenna K., Vajda A., Fagan A., Bradley D.G., Hardiman O. Patterns of cerebral and cerebellar white matter degeneration in ALS. J. Neurol. Neurosurg. Psychiatry. 2015;86:468–470.
    1. Bede P., Omer T., Finegan E., Chipika R.H., Iyer P.M., Doherty M.A., Vajda A., Pender N., McLaughlin R.L., Hutchinson S., Hardiman O. Connectivity-based characterisation of subcortical grey matter pathology in frontotemporal dementia and ALS: a multimodal neuroimaging study. Brain Imaging Behav. 2018:1–12.
    1. Benjamini Y. Discovering the false discovery rate. J. Royal Stat. Soc. Ser. B (Stat. Methodol.). 2010;72:405–416.
    1. Bunge S.A., Ochsner K.N., Desmond J.E., Glover G.H., Gabrieli J.D.E. Prefrontal regions involved in keeping information in and out of mind. Brain. 2001;124:2074–2086.
    1. Burton M.W. The role of inferior frontal cortex in phonological processing. Cogn. Sci. 2001;25:695–709.
    1. Byrne S., Elamin M., Bede P., Hardiman O. Absence of consensus in diagnostic criteria for familial neurodegenerative diseases. J. Neurol. Neurosurg. Psychiatry. 2012;83:365–367.
    1. Byrne S., Elamin M., Bede P., Shatunov A., Walsh C., Corr B., Heverin M., Jordan N., Kenna K., Lynch C., McLaughlin R.L., Iyer P.M., O'Brien C., Phukan J., Wynne B., Bokde A.L., Bradley D.G., Pender N., Al-Chalabi A., Hardiman O. Cognitive and clinical characteristics of patients with amyotrophic lateral sclerosis carrying a C9orf72 repeat expansion: a population-based cohort study. Lancet Neurol. 2012;11:232–240.
    1. Cooray G., Garrido M.I., Hyllienmark L., Brismar T. A mechanistic model of mismatch negativity in the ageing brain. Clin. Neurophysiol. 2014;125:1774–1782.
    1. Crockford C., Newton J., Lonergan K., Chiwera T., Booth T., Chandran S., Colville S., Heverin M., Mays I., Pal S., Pender N., Pinto-Grau M., Radakovic R., Shaw C.E., Stephenson L., Swingler R., Vajda A., Al-Chalabi A., Hardiman O., Abrahams S. ALS-specific cognitive and behavior changes associated with advancing disease stage in ALS. Neurology. 2018;91:e1370–e1380.
    1. da Silva F.L. EEG and MEG: relevance to neuroscience. Neuron. 2013;80:1112–1128.
    1. Darvas F., Pantazis D., Kucukaltun-Yildirim E., Leahy R.M. Mapping human brain function with MEG and EEG: methods and validation. NeuroImage. 2004;23:S289–S299.
    1. Delis D.C., Kaplan E., Kramer J.H. Psychological Corporation; San Antonio TX: 2001. Delis-Kaplan Executive Function System (D-KEFS)
    1. Döring C., Müller M., Hagenmuller F., Ajdacic-Gross V., Haker H., Kawohl W., Rössler W., Heekeren K. Mismatch negativity: alterations in adults from the general population who report subclinical psychotic symptoms. Eur. Psychiatry. 2016;34:9–16.
    1. Douw L., Nieboer D., Stam C.J., Tewarie P., Hillebrand A. Consistency of magnetoencephalographic functional connectivity and network reconstruction using a template versus native MRI for co-registration. Hum. Brain Mapp. 2018;39:104–119.
    1. Dukic S., Iyer P.M., Mohr K., Hardiman O., Lalor E.C., Nasseroleslami B. Estimation of coherence using the median is robust against EEG artefacts. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2017;2017:3949–3952.
    1. Efron B. Empirical Bayes estimates for large-scale prediction problems. J. Am. Stat. Assoc. 2009;104:1015–1028.
    1. Elamin M., Pinto-Grau M., Burke T., Bede P., Rooney J., O'Sullivan M., Lonergan K., Kirby E., Quinlan E., Breen N., Vajda A., Heverin M., Pender N., Hardiman O. Identifying behavioural changes in ALS: validation of the beaumont behavioural inventory (BBI) Amyotroph Lateral Scler Frontotemporal Degener. 2017;18:68–73.
    1. Erdoğan S.B., Tong Y., Hocke L.M., Lindsey K.P., deB Frederick B. Correcting for blood arrival time in global mean regression enhances functional connectivity analysis of resting state fMRI-BOLD signals. Fron. Hum. Neurosci. 2016;10:311.
    1. Escera C., Yago E., Alho K. Electrical responses reveal the temporal dynamics of brain events during involuntary attention switching. Eur. J. Neurosci. 2001;14:877–883.
    1. Escera C., Yago E., Corral M.-J., Corbera S., Nuñez M.I. Attention capture by auditory significant stimuli: semantic analysis follows attention switching. Eur. J. Neurosci. 2003;18:2408–2412.
    1. Fonov V., Evans A.C., Botteron K., Almli C.R., McKinstry R.C., Collins D.L. Unbiased average age-appropriate atlases for pediatric studies. NeuroImage. 2011;54:313–327.
    1. Fuchs M., Kastner J., Wagner M., Hawes S., Ebersole J.S. A standardized boundary element method volume conductor model. Clin. Neurophysiol. 2002;113:702–712.
    1. Giard M.-H., Perrin F., Pernier J., Bouchet P. Brain generators implicated in the processing of auditory stimulus deviance: a topographic event-related potential study. Psychophysiology. 1990;27:627–640.
    1. Grieve S.M., Menon P., Korgaonkar M.S., Gomes L., Foster S., Kiernan M.C., Vucic S. Potential structural and functional biomarkers of upper motor neuron dysfunction in ALS. Amyotroph. Lateral Scler. Frontotemporal Degener. 2015;17:85–92.
    1. Hajian-Tilaki K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J. Intern. Med. 2013;4:627–635.
    1. Holmes C.J., Hoge R., Collins L., Woods R., Toga A.W., Evans A.C. Enhancement of Mr images using registration for signal averaging. J. Comput. Assist. Tomogr. 1998;22:324–333.
    1. Hopfinger J.B., Buonocore M.H., Mangun G.R. The neural mechanisms of top-down attentional control. Nat. Neurosci. 2000;3:284–291.
    1. Howard M.A., Volkov I.O., Mirsky R., Garell P.C., Noh M.D., Granner M., Damasio H., Steinschneider M., Reale R.A., Hind J.E., Brugge J.F. Auditory cortex on the human posterior superior temporal gyrus. J. Comp. Neurol. 2000;416:79–92.
    1. Iyer P.M., Mohr K., Broderick M., Gavin B., Burke T., Bede P., Pinto-Grau M., Pender N.P., McLaughlin R., Vajda A. Mismatch negativity as an indicator of cognitive sub-domain dysfunction in amyotrophic lateral sclerosis. Front. Neurol. 2017;8:395.
    1. Jääskeläinen I.P., Ahveninen J., Bonmassar G., Dale A.M., Ilmoniemi R.J., Levänen S., Lin F.-H., May P., Melcher J., Stufflebeam S., Tiitinen H., Belliveau J.W. Human posterior auditory cortex gates novel sounds to consciousness. Proc. Natl. Acad. Sci. U. S. A. 2004;101:6809–6814.
    1. Jemel B., Achenbach C., Müller B.W., Röpcke B., Oades R.D. Mismatch negativity results from bilateral asymmetric dipole sources in the frontal and temporal lobes. Brain Topogr. 2002;15:13–27.
    1. Katada E., Sato K., Ojika K., Ueda R. Cognitive event-related potentials: useful clinical information in Alzheimer's disease. Curr. Alzheimer Res. 2004;1:63–69.
    1. Kiernan M.C., Vucic S., Cheah B.C., Turner M.R., Eisen A., Hardiman O., Burrell J.R., Zoing M.C. Amyotrophic lateral sclerosis. Lancet. 2011;377:942–955.
    1. Kujala T., Leminen M. Low-level neural auditory discrimination dysfunctions in specific language impairment-a review on mismatch negativity findings. Dev. Cogn. Neurosci. 2017;28:65–75.
    1. Lyytinen H., Blomberg A.P., Näätänen R. Event-related potentials and autonomic responses to a change in unattended auditory stimuli. Psychophysiology. 1992;29:523–534.
    1. MacLean S.E., Blundon E.G., Ward L.M. Brain regional networks active during the mismatch negativity vary with paradigm. Neuropsychologia. 2015;75:242–251.
    1. Maess B., Jacobsen T., Schröger E., Friederici A.D. Localizing pre-attentive auditory memory-based comparison: magnetic mismatch negativity to pitch change. NeuroImage. 2007;37:561–571.
    1. May P., Tiitinen H. Human cortical processing of auditory events over time. Neuroreport. 2001;12:573–577.
    1. May P.J.C., Tiitinen H. The MMN is a derivative of the auditory N100 response. Neurol. Clin. Neurophysiol. 2004;2004:20.
    1. May P.J.C., Tiitinen H. Mismatch negativity (MMN), the deviance-elicited auditory deflection, explained. Psychophysiology. 2010;47:66–122.
    1. May P., Tiitinen H., Ilmoniemi R.J., Nyman G., Taylor J.G., Näätänen R. Frequency change detection in human auditory cortex. J. Comput. Neurosci. 1999;6:99–120.
    1. Menon V., Uddin L.Q. Saliency, switching, attention and control: a network model of insula function. Brain Struct. Funct. 2010;214:655–667.
    1. Moeller F., Muthuraman M., Stephani U., Deuschl G., Raethjen J., Siniatchkin M. Representation and propagation of epileptic activity in absences and generalized photoparoxysmal responses. Hum. Brain Mapp. 2013;34:1896–1909.
    1. Müller B.W., Jüptner M., Jentzen W., Müller S.P. Cortical activation to auditory mismatch elicited by frequency deviant and complex novel sounds: a PET study. NeuroImage. 2002;17:231–239.
    1. Muthuraman M., Hellriegel H., Hoogenboom N., Anwar A.R., Mideksa K.G., Krause H., Schnitzler A., Deuschl G., Raethjen J. Beamformer source analysis and connectivity on concurrent EEG and MEG Data during voluntary movements. PLoS One. 2014;9
    1. Muthuraman M., Raethjen J., Koirala N., Anwar A.R., Mideksa K.G., Elble R., Groppa S., Deuschl G. Cerebello-cortical network fingerprints differ between essential, Parkinson's and mimicked tremors. Brain. 2018;141:1770–1781.
    1. Naatanen R. The mismatch negativity: a powerful tool for cognitive neuroscience. Ear Hearing. 1995;16:6–18.
    1. Näätänen R. The mismatch negativity: a powerful tool for cognitive neuroscience. Ear Hear. 1995;16:6–18.
    1. Näätänen R., Michie P.T. Early selective-attention effects on the evoked potential: a critical review and reinterpretation. Biol. Psychol. 1979;8:81–136.
    1. Näätänen R., Gaillard A.W.K., Mäntysalo S. Early selective-attention effect on evoked potential reinterpreted. Acta Psychol. 1978;42:313–329.
    1. Näätänen R., Paavilainen P., Rinne T., Alho K. The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin. Neurophysiol. 2007;118:2544–2590.
    1. Näätänen R., Kujala T., Escera C., Baldeweg T., Kreegipuu K., Carlson S., Ponton C. The mismatch negativity (MMN)--a unique window to disturbed central auditory processing in ageing and different clinical conditions. Clin. Neurophysiol. 2012;123:424–458.
    1. Näätänen R., Sussman E.S., Salisbury D., Shafer V.L. Mismatch negativity (MMN) as an index of cognitive dysfunction. Brain Topogr. 2014;27:451–466.
    1. Nasseroleslami B. An implementation of empirical bayesian inference and non-null bootstrapping for threshold selection and power estimation in multiple and single statistical testing. BioRxiv. 2018;342964
    1. Nasseroleslami B., Dukic S., Broderick M., Mohr K., Schuster C., Gavin B., McLaughlin R., Heverin M., Vajda A., Iyer P.M., Pender N., Bede P., Lalor E.C., Hardiman O. Characteristic Increases in EEG connectivity correlate with changes of structural MRI in amyotrophic lateral sclerosis. Cereb. Cortex. 2017:1–15.
    1. Nekovarova T., Fajnerova I., Horacek J., Spaniel F. Bridging disparate symptoms of schizophrenia: a triple network dysfunction theory. Front. Behav Neurosci. 2014;8
    1. Nixon P., Lazarova J., Hodinott-Hill I., Gough P., Passingham R. The inferior frontal gyrus and phonological processing: an investigation using rTMS. J. Cogn. Neurosci. 2004;16:289–300.
    1. Oades R.D., Wild-Wall N., Juran S.A., Sachsse J., Oknina L.B., Röpcke B. Auditory change detection in schizophrenia: sources of activity, related neuropsychological function and symptoms in patients with a first episode in adolescence, and patients 14 years after an adolescent illness-onset. BMC Psychiatry. 2006;6:7.
    1. Oknina L.B., Wild-Wall N., Oades R.D., Juran S.A., Röpcke B., Pfueller U., Weisbrod M., Chan E., Chen E.Y.H. Frontal and temporal sources of mismatch negativity in healthy controls, patients at onset of schizophrenia in adolescence and others at 15 years after onset. Schizophr. Res. 2005;76:25–41.
    1. Oostenveld R., Fries P., Maris E., Schoffelen J.-M. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011;2011
    1. Opitz B., Rinne T., Mecklinger A., von Cramon D.Y., Schröger E. Differential contribution of frontal and temporal cortices to auditory change detection: fMRI and ERP results. NeuroImage. 2002;15:167–174.
    1. Pascual-Marqui R.D., Lehmann D., Koukkou M., Kochi K., Anderer P., Saletu B., Tanaka H., Hirata K., John E.R., Prichep L., Biscay-Lirio R., Kinoshita T. Assessing interactions in the brain with exact low-resolution electromagnetic tomography. Philos. Trans A Math Phys. Eng. Sci. 2011;369:3768–3784.
    1. Phukan J., Pender N.P., Hardiman O. Cognitive impairment in amyotrophic lateral sclerosis. Lancet Neurol. 2007;6:994–1003.
    1. Pinto-Grau M., Burke T., Lonergan K., McHugh C., Mays I., Madden C., Vajda A., Heverin M., Elamin M., Hardiman O., Pender N. Screening for cognitive dysfunction in ALS: validation of the Edinburgh Cognitive and Behavioural ALS Screen (ECAS) using age and education adjusted normative data. Amyotroph Lateral Scler Frontotemporal Degener. 2017;18:99–106.
    1. Proudfoot M., Colclough G.L., Quinn A., Wuu J., Talbot K., Benatar M., Nobre A.C., Woolrich M.W., Turner M.R. Increased cerebral functional connectivity in ALS: a resting-state magnetoencephalography study. Neurology. 2018
    1. Raichle M.E., MacLeod A.M., Snyder A.Z., Powers W.J., Gusnard D.A., Shulman G.L. A default mode of brain function. Proc. Natl. Acad. Sci. U. S. A. 2001;98:676–682.
    1. Reis P.M.R., Hebenstreit F., Gabsteiger F., von Tscharner V., Lochmann M. Methodological aspects of EEG and body dynamics measurements during motion. Front. Hum. Neurosci. 2014;8
    1. Rinne T., Alho K., Ilmoniemi R.J., Virtanen J., Näätänen R. Separate time behaviors of the temporal and frontal mismatch negativity sources. NeuroImage. 2000;12:14–19.
    1. Ruusuvirta T., Huotilainen M., Fellman V., Näätänen R. Numerical discrimination in newborn infants as revealed by event-related potentials to tone sequences. Eur. J. Neurosci. 2009;30:1620–1624.
    1. Schall U. Is it time to move mismatch negativity into the clinic? Biol. Psychol. 2016;116:41–46.
    1. Scherg M., Berg P. Use of prior knowledge in brain electromagnetic source analysis. Brain Topogr. 1991;4:143–150.
    1. Schreiber H., Gaigalat T., Wiedemuth-Catrinescu U., Graf M., Uttner I., Muche R., Ludolph A.C. Cognitive function in bulbar- and spinal-onset amyotrophic lateral sclerosis. A longitudinal study in 52 patients. J. Neurol. 2005;252:772–781.
    1. Schröger E. A neural mechanism for involuntary attention shifts to changes in auditory stimulation. J. Cogn. Neurosci. 1996;8:527–539.
    1. Schuster C., Hardiman O., Bede P. Development of an automated MRI-based diagnostic protocol for amyotrophic lateral sclerosis using disease-specific pathognomonic features: a quantitative disease-state classification study. PLoS One. 2016;11
    1. Seeley W.W., Menon V., Schatzberg A.F., Keller J., Glover G.H., Kenna H., Reiss A.L., Greicius M.D. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 2007;27:2349–2356.
    1. Sorrentino P., Rucco R., Jacini F., Trojsi F., Lardone A., Baselice F., Femiano C., Santangelo G., Granata C., Vettoliere A., Monsurrò M.R., Tedeschi G., Sorrentino G. Brain functional networks become more connected as amyotrophic lateral sclerosis progresses: a source level magnetoencephalographic study. Neuroimage Clin. 2018;20:564–571.
    1. Swanson J. The Delis-Kaplan executive function system: a review. Can. J. Sch. Psychol. 2005;20:117–128.
    1. Teplan M. Fundamentals of EEG measurement. Meas. Sci. Rev. 2002;2:1–11.
    1. Todd J., Harms L., Schall U., Michie P.T. Mismatch negativity: translating the potential. Front Psychiatry. 2013;4
    1. Tzourio-Mazoyer N., Landeau B., Papathanassiou D., Crivello F., Etard O., Delcroix N., Mazoyer B., Joliot M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage. 2002;15:273–289.
    1. Ulanovsky N., Las L., Nelken I. Processing of low-probability sounds by cortical neurons. Nat. Neurosci. 2003;6:391–398.
    1. Van Veen B.D., van Drongelen W., Yuchtman M., Suzuki A. Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans. Biomed. Eng. 1997;44:867–880.
    1. Vucic S., Kiernan M.C. Novel threshold tracking techniques suggest that cortical hyperexcitability is an early feature of motor neuron disease. Brain. 2006;129:2436–2446.
    1. Welsh R.C., Jelsone-Swain L.M., Foerster B.R. The utility of independent component analysis and machine learning in the identification of the amyotrophic lateral sclerosis diseased brain. Front. Hum. Neurosci. 2013;7:251.
    1. Wendel K., Väisänen O., Malmivuo J., Gencer N.G., Vanrumste B., Durka P., Magjarević R., Supek S., Pascu M.L., Fontenelle H., de Peralta Menendez R. Grave. EEG/MEG source imaging: methods, challenges, and open issues. Comput. Intell. Neurosci. 2009
    1. Wijnen V.J.M., van Boxtel G.J.M., Eilander H.J., de Gelder B. Mismatch negativity predicts recovery from the vegetative state. Clin. Neurophysiol. 2007;118:597–605.
    1. Winkler I., Karmos G., Näätänen R. Adaptive modeling of the unattended acoustic environment reflected in the mismatch negativity event-related potential. Brain Res. 1996;742:239–252.
    1. Yago E., Escera C., Alho K., Giard M.H. Cerebral mechanisms underlying orienting of attention towards auditory frequency changes. Neuroreport. 2001;12:2583–2587.

Source: PubMed

3
Subscribe