Right over left ventricular end-diastolic area relevance to predict hemodynamic intolerance of high-frequency oscillatory ventilation in patients with severe ARDS

Lionel Ursulet, Arnaud Roussiaux, Dominique Belcour, Cyril Ferdynus, Bernard-Alex Gauzere, David Vandroux, Julien Jabot, Lionel Ursulet, Arnaud Roussiaux, Dominique Belcour, Cyril Ferdynus, Bernard-Alex Gauzere, David Vandroux, Julien Jabot

Abstract

Background: High-frequency oscillatory ventilation (HFOV) does not improve the prognosis of ARDS patients despite an improvement in oxygenation. This paradox may partly be explained by HFOV hemodynamic side-effects on right ventricular function. Our goal was to study the link between HFOV and hemodynamic effects and to test if the pre-HFOV right over left ventricular end-diastolic area (RVEDA/LVEDA) ratio, as a simple parameter of afterload-related RV dysfunction, could be used to predict HFOV hemodynamic intolerance in patients with severe ARDS.

Methods: Twenty-four patients were studied just before and within 3 h of HFOV using transthoracic echocardiography and transpulmonary thermodilution.

Results: Before HFOV, the mean PaO2/FiO2 ratio was 89 ± 23. The number of patients with a RVEDA/LVEDA ratio >0.6 significantly increased after HFOV [11 (46 %) vs. 17 (71 %)]. Although HFOV did not significantly decrease the arterial pressure (systolic, diastolic, mean and pulse pressure), it significantly decreased the cardiac index (CI) by 13 ± 18 % and significantly increased the RVEDA/LVEDA ratio by 14 ± 11 %. A significant correlation was observed between pre-HFOV RVEDA/LVEDA ratio and CI diminution after HFOV (r = 0.78; p < 0.0001). A RVEDA/LVEDA ratio superior to 0.6 resulted in a CI decrease >15 % during HFOV with a sensitivity of 80 % (95 % confidence interval 44-98 %) and a specificity of 79 % (confidence interval 49-95 %).

Conclusion: The RVEDA/LVEDA ratio measured just before HFOV predicts the hemodynamic intolerance of this technique in patients with severe ARDS. A high ratio under CMV raises questions about the use of HFOV in such patients.

Trial registration: ClinicalTrials.gov: NCT01167621.

Keywords: Acute respiratory distress syndrome; Acute right ventricular dysfunction; Echocardiography; Hemodynamic monitoring; High-frequency oscillatory ventilation; Transpulmonary thermodilution.

Figures

Fig. 1
Fig. 1
Inverse correlation between the right over left ventricular end-diastolic area at inclusion and changes in cardiac index during HFOV. Line linear regression line
Fig. 2
Fig. 2
Receiver operating characteristic curve showing the ability of the right over left ventricular end-diastolic area at inclusion to detect a cardiac index decrease ≥15 % during HFOV. RVEDA right ventricular end diastolic area, LVEDA left ventricular end diastolic area

References

    1. Ferguson ND, Fan E, Camporota L, Antonelli M, Anzueto A, Beale R, et al. The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med. 2012;38:1573–1582. doi: 10.1007/s00134-012-2682-1.
    1. Niwa T, Hasegawa R, Ryuge M, Kawase M, Kondoh Y, Taniguchi H. Benefits and risks associated with the R100 high frequency oscillatory ventilator for patients with severe hypoxaemic respiratory failure. Anaesth Intensive Care. 2011;39:1111–1119.
    1. Mentzelopoulos SD, Malachias S, Zintzaras E, Kokkoris S, Zakynthinos E, Makris D, et al. Intermittent recruitment with high-frequency oscillation/tracheal gas insufflation in acute respiratory distress syndrome. Eur Respir J. 2012;39:635–647. doi: 10.1183/09031936.00158810.
    1. Sud S, Sud M, Friedrich JO, Meade MO, Ferguson ND, Wunsch H, et al. High frequency oscillation in patients with acute lung injury and acute respiratory distress syndrome (ARDS): systematic review and meta-analysis. BMJ. 2010;340:c2327. doi: 10.1136/bmj.c2327.
    1. Adhikari NKJ, Bashir A, Lamontagne F, Mehta S, Ferguson ND, Zhou Q, et al. High-frequency oscillation in adults: a utilization review. Crit Care Med. 2011;39:2631–2644.
    1. Derdak S, Mehta S, Stewart TE, Smith T, Rogers M, Buchman TG, et al. High-frequency oscillatory ventilation for acute respiratory distress syndrome in adults: a randomized, controlled trial. Am J Respir Crit Care Med. 2002;166:801–808. doi: 10.1164/rccm.2108052.
    1. Papazian L, Gainnier M, Marin V, Donati S, Arnal J-M, Demory D, et al. Comparison of prone positioning and high-frequency oscillatory ventilation in patients with acute respiratory distress syndrome. Crit Care Med. 2005;33:2162–2171. doi: 10.1097/01.CCM.0000181298.05474.2B.
    1. Young D, Lamb SE, Shah S, MacKenzie I, Tunnicliffe W, Lall R, et al. High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med. 2013;368:806–813. doi: 10.1056/NEJMoa1215716.
    1. Ferguson ND, Cook DJ, Guyatt GH, Mehta S, Hand L, Austin P, et al. High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med. 2013;368:795–805. doi: 10.1056/NEJMoa1215554.
    1. David M, von Bardeleben RS, Weiler N, Markstaller K, Scholz A, Karmrodt J, et al. Cardiac function and haemodynamics during transition to high-frequency oscillatory ventilation. Eur J Anaesthesiol. 2004;21:944–952. doi: 10.1097/00003643-200412000-00004.
    1. Guervilly C, Forel J-M, Hraiech S, Demory D, Allardet-Servent J, Adda M, et al. Right ventricular function during high-frequency oscillatory ventilation in adults with acute respiratory distress syndrome. Crit Care Med. 2012;40:1539–1545. doi: 10.1097/CCM.0b013e3182451b4a.
    1. Mercat A, Richard J-CM, Vielle B, Jaber S, Osman D, Diehl J-L, et al. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299:646–655. doi: 10.1001/jama.299.6.646.
    1. Van Dishoeck A-M, van der Hooft T, Simoons ML, van der Ent M, Scholte OP, Reimer WJM. Reliable assessment of sedation level in routine clinical practice by adding an instruction to the Ramsay Scale. Eur J Cardiovasc Nurs. 2009;8:125–128. doi: 10.1016/j.ejcnurse.2008.10.004.
    1. Papazian L, Forel J-M, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363:1107–1116. doi: 10.1056/NEJMoa1005372.
    1. Morán I, Bellapart J, Vari A, Mancebo J. Heat and moisture exchangers and heated humidifiers in acute lung injury/acute respiratory distress syndrome patients. Effects on respiratory mechanics and gas exchange. Intensive Care Med. 2006;32:524–531. doi: 10.1007/s00134-006-0073-1.
    1. Allyn J, Allou N, Dib M, Tashk P, Desmard M, Dufour G, et al. Echocardiography to predict tolerance to negative fluid balance in acute respiratory distress syndrome/acute lung injury. J Crit Care. 2013;28:1006–1010. doi: 10.1016/j.jcrc.2013.07.044.
    1. Isakow W, Schuster DP. Extravascular lung water measurements and hemodynamic monitoring in the critically ill: bedside alternatives to the pulmonary artery catheter. Am J Physiol Lung Cell Mol Physiol. 2006;291:L1118–L1131. doi: 10.1152/ajplung.00277.2006.
    1. Guérin C, Reignier J, Richard J-C, Beuret P, Gacouin A, Boulain T, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368:2159–2168. doi: 10.1056/NEJMoa1214103.
    1. Richard C, Argaud L, Blet A, Boulain T, Contentin L, Dechartres A, et al. Extracorporeal life support for patients with acute respiratory distress syndrome: report of a Consensus Conference. Ann Intensive Care. 2014;4:15. doi: 10.1186/2110-5820-4-15.
    1. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiograph. J Am Soc Echocardiogr. 2005;18:1440–1463. doi: 10.1016/j.echo.2005.10.005.
    1. Vieillard-Baron A, Schmitt JM, Augarde R, Fellahi JL, Prin S, Page B, et al. Acute cor pulmonale in acute respiratory distress syndrome submitted to protective ventilation: incidence, clinical implications, and prognosis. Crit Care Med. 2001;29:1551–1555. doi: 10.1097/00003246-200108000-00009.
    1. Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiogr. 2009;10:165–193. doi: 10.1093/ejechocard/jep007.
    1. Paulus WJ, Tschöpe C, Sanderson JE, Rusconi C, Flachskampf FA, Rademakers FE, et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J. 2007;28:2539–2550. doi: 10.1093/eurheartj/ehm037.
    1. Sakka SG, Reuter DA, Perel A. The transpulmonary thermodilution technique. J Clin Monit Comput. 2012;26:347–353. doi: 10.1007/s10877-012-9378-5.
    1. Sakka SG, Rühl CC, Pfeiffer UJ, Beale R, McLuckie A, Reinhart K, et al. Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med. 2000;26:180–187. doi: 10.1007/s001340050043.
    1. Monnet X, Anguel N, Osman D, Hamzaoui O, Richard C, Teboul J-L. Assessing pulmonary permeability by transpulmonary thermodilution allows differentiation of hydrostatic pulmonary edema from ALI/ARDS. Intensive Care Med. 2007;33:448–453. doi: 10.1007/s00134-006-0498-6.
    1. Vieillard-Baron A, Price LC, Matthay MA. Acute cor pulmonale in ARDS. Intensive Care Med. 2013;39:1836–1838. doi: 10.1007/s00134-013-3045-2.
    1. Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, et al. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307:2526–2533.
    1. Ferguson ND, Fan E, Camporota L, Antonelli M, Anzueto A, Beale R, et al. The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med. 2012;38:1573–1582. doi: 10.1007/s00134-012-2682-1.
    1. Camporota L, Sherry T, Smith J, Lei K, McLuckie A, Beale R. Physiological predictors of survival during high-frequency oscillatory ventilation in adults with acute respiratory distress syndrome. Crit Care. 2013;17:R40. doi: 10.1186/cc12550.
    1. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The acute respiratory distress syndrome network. N Engl J Med. 2000;342:1301–1308. doi:10.1056/NEJM200005043421801.
    1. Gu X-L, Wu G-N, Yao Y-W, Shi D-H, Song Y. In adult acute respiratory distress syndrome patients, is high-frequency oscillatory ventilation more effective and safer than conventional protective ventilation? A meta-analysis of randomized controlled trials. Crit Care. 2014;18:R111. doi: 10.1186/cc13900.
    1. Huang C-T, Lin H-H, Ruan S-Y, Lee M-S, Tsai Y-J, Yu C-J. Efficacy and adverse events of high frequency oscillatory ventilation in adult patients with acute respiratory distress syndrome: a meta-analysis. Crit Care. 2014;18:R102. doi: 10.1186/cc13880.
    1. Maitra S, Bhattacharjee S, Khanna P, Baidya DK. High-frequency ventilation does not provide mortality benefit in comparison with conventional lung-protective ventilation in acute respiratory distress syndrome: a meta-analysis of the randomized controlled trials. Anesthesiology. 2014
    1. Kushimoto S, Taira Y, Kitazawa Y, Okuchi K, Sakamoto T, Ishikura H, et al. The clinical usefulness of extravascular lung water and pulmonary vascular permeability index to diagnose and characterize pulmonary edema: a prospective multicenter study on the quantitative differential diagnostic definition for acute lung injury/acute. Crit Care. 2012;16:R232. doi: 10.1186/cc11898.
    1. Tagami T, Nakamura T, Kushimoto S, Tosa R, Watanabe A, Kaneko T, et al. Early-phase changes of extravascular lung water index as a prognostic indicator in acute respiratory distress syndrome patients. Ann Intensive Care. 2014;4:27. doi: 10.1186/s13613-014-0027-7.

Source: PubMed

3
Subscribe