Temporal Patterns of 14 Blood Biomarker candidates of Cardiac Remodeling in Relation to Prognosis of Patients With Chronic Heart Failure-The Bio- SH i FT Study

Elke Bouwens, Milos Brankovic, Henk Mouthaan, Sara Baart, Dimitris Rizopoulos, Nick van Boven, Kadir Caliskan, Olivier Manintveld, Tjeerd Germans, Jan van Ramshorst, Victor Umans, K Martijn Akkerhuis, Isabella Kardys, Elke Bouwens, Milos Brankovic, Henk Mouthaan, Sara Baart, Dimitris Rizopoulos, Nick van Boven, Kadir Caliskan, Olivier Manintveld, Tjeerd Germans, Jan van Ramshorst, Victor Umans, K Martijn Akkerhuis, Isabella Kardys

Abstract

Background Remodeling biomarkers carry high potential for predicting adverse events in chronic heart failure ( CHF ) patients. However, temporal patterns during the course of CHF , and especially the trajectory before an adverse event, are unknown. We studied the prognostic value of temporal patterns of 14 cardiac remodeling biomarker candidates in stable patients with CHF from the Bio-SHiFT (Serial Biomarker Measurements and New Echocardiographic Techniques in Chronic Heart Failure Patients Result in Tailored Prediction of Prognosis) study. Methods and Results In 263 CHF patients, we performed trimonthly blood sampling during a median follow-up of 2.2 years. For the analysis, we selected all baseline samples, the 2 samples closest to the primary end point ( PE ), or the last sample available for end point-free patients. Thus, in 567 samples, we measured suppression of tumorigenicity-2, galectin-3, galectin-4, growth differentiation factor-15, matrix metalloproteinase-2, 3, and 9, tissue inhibitor metalloproteinase-4, perlecan, aminopeptidase-N, caspase-3, cathepsin-D, cathepsin-Z, and cystatin-B. The PE was a composite of cardiovascular mortality, heart transplantation, left ventricular assist device implantation, and HF hospitalization. Associations between repeatedly measured biomarker candidates and the PE were investigated by joint modeling. Median age was 68 (interquartile range: 59-76) years with 72% men; 70 patients reached the PE . Repeatedly measured suppression of tumorigenicity-2, galectin-3, galectin-4, growth differentiation factor-15, matrix metalloproteinase-2 and 9, tissue inhibitor metalloproteinase-4, perlecan, cathepsin-D, and cystatin-B levels were significantly associated with the PE , and increased as the PE approached. The slopes of biomarker trajectories were also predictors of clinical outcome, independent of their absolute level. Associations persisted after adjustment for clinical characteristics and pharmacological treatment. Suppression of tumorigenicity-2 was the strongest predictor (hazard ratio: 7.55 per SD difference, 95% CI : 5.53-10.30), followed by growth differentiation factor-15 (4.06, 2.98-5.54) and matrix metalloproteinase-2 (3.59, 2.55-5.05). Conclusions Temporal patterns of remodeling biomarker candidates predict adverse clinical outcomes in CHF . Clinical Trial Registration URL : http://www.clinicaltrials.gov . Unique identifier: NCT 01851538.

Trial registration: ClinicalTrials.gov NCT01851538.

Keywords: biomarkers; cardiac remodeling; heart failure; prognosis; repeated measurements.

Figures

Figure 1
Figure 1
Average temporal patterns of cardiac remodeling biomarker candidates during follow‐up. X‐axis: time remaining to the primary end point (for patients who experienced incident adverse events) or time remaining to last sample moment (for patients who remained event free). Of note is that “time zero” is defined as the occurrence of the end point and is depicted on the right side of the x‐axis, so that the average marker trajectory can be visualized as the end point approaches (inherently to this representation, baseline sampling occurred before “time zero”). Y‐axis: biomarker levels in arbitrary, relative units (normalized protein expression, NPX on linear scale). Solid red line: Average temporal pattern of biomarker candidate level in patients who reached the primary end point during follow‐up. Solid blue line: Average temporal pattern of biomarker candidate level in patients who remained end point free (solid blue line). Dashed lines: 95% CI. AP‐N indicates aminopeptidase‐N; CASP3, caspase‐3; CSTB, cystatin‐B; CTSD, cathepsin D; CTSZ, cathepsin Z; Gal‐3, galectin‐3; Gal‐4, galectin‐4; GDF‐15, growth differentiation factor 15; MMP‐2, 3, and 9, matrix metalloproteinase 2, 3, and 9; NPX, normalized protein expression; NT‐proBNP, N‐terminal pro–B‐type natriuretic peptide; PLC, perlecan; ST2, suppression of tumorigenicity‐2; TIMP‐4, tissue inhibitor metalloproteinase 4.

References

    1. Writing Committee M , Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL, Johnson MR, Kasper EK, Levy WC, Masoudi FA, McBride PE, McMurray JJ, Mitchell JE, Peterson PN, Riegel B, Sam F, Stevenson LW, Tang WH, Tsai EJ, Wilkoff BL; American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines . 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;128:e240–e327.
    1. Chow SL, Maisel AS, Anand I, Bozkurt B, de Boer RA, Felker GM, Fonarow GC, Greenberg B, Januzzi JL Jr, Kiernan MS, Liu PP, Wang TJ, Yancy CW, Zile MR; American Heart Association Clinical Pharmacology Committee of the Council on Clinical Cardiology, Council on Basic Cardiovascular Sciences, Council on Cardiovascular Disease in the Young, Council on Cardiovascular and Stroke Nursing, Council on Cardiopulmonary Critical Care, Perioperative and Resuscitation, Council on Epidemiology and Prevention, Council on Functional Genomics and Translational Biology, Council on Quality of Care and Outcomes Research . Role of biomarkers for the prevention, assessment, and management of heart failure: a scientific statement from the American Heart Association. Circulation. 2017;135:e1054–e1091.
    1. van Kimmenade RR, Januzzi JL Jr. Emerging biomarkers in heart failure. Clin Chem. 2012;58:127–138.
    1. Mann DL, Barger PM, Burkhoff D. Myocardial recovery and the failing heart: myth, magic, or molecular target? J Am Coll Cardiol. 2012;60:2465–2472.
    1. Aimo A, Vergaro G, Passino C, Ripoli A, Ky B, Miller WL, Bayes‐Genis A, Anand I, Januzzi JL, Emdin M. Prognostic value of soluble suppression of tumorigenicity‐2 in chronic heart failure: a meta‐analysis. JACC Heart Fail. 2017;5:280–286.
    1. Imran TF, Shin HJ, Mathenge N, Wang F, Kim B, Joseph J, Gaziano JM, Djousse L. Meta‐analysis of the usefulness of plasma galectin‐3 to predict the risk of mortality in patients with heart failure and in the general population. Am J Cardiol. 2017;119:57–64.
    1. Sharma A, Stevens SR, Lucas J, Fiuzat M, Adams KF, Whellan DJ, Donahue MP, Kitzman DW, Pina IL, Zannad F, Kraus WE, O'Connor CM, Felker GM. Utility of growth differentiation factor‐15, a marker of oxidative stress and inflammation, in chronic heart failure: insights from the HF‐ACTION study. JACC Heart Fail. 2017;5:724–734.
    1. de Boer RA, Daniels LB, Maisel AS, Januzzi JL Jr. State of the art: newer biomarkers in heart failure. Eur J Heart Fail. 2015;17:559–569.
    1. van der Velde AR, Gullestad L, Ueland T, Aukrust P, Guo Y, Adourian A, Muntendam P, van Veldhuisen DJ, de Boer RA. Prognostic value of changes in galectin‐3 levels over time in patients with heart failure: data from CORONA and COACH. Circ Heart Fail. 2013;6:219–226.
    1. Broch K, Ueland T, Nymo SH, Kjekshus J, Hulthe J, Muntendam P, McMurray JJ, Wikstrand J, Cleland JG, Aukrust P, Gullestad L. Soluble ST2 is associated with adverse outcome in patients with heart failure of ischaemic aetiology. Eur J Heart Fail. 2012;14:268–277.
    1. Gaggin HK, Szymonifka J, Bhardwaj A, Belcher A, De Berardinis B, Motiwala S, Wang TJ, Januzzi JL Jr. Head‐to‐head comparison of serial soluble ST2, growth differentiation factor‐15, and highly‐sensitive troponin T measurements in patients with chronic heart failure. JACC Heart Fail. 2014;2:65–72.
    1. Anand IS, Rector TS, Kuskowski M, Snider J, Cohn JN. Prognostic value of soluble ST2 in the Valsartan Heart Failure Trial. Circ Heart Fail. 2014;7:418–426.
    1. Rizopoulos D, Takkenberg JJ. Tools & techniques—statistics: dealing with time‐varying covariates in survival analysis—joint models versus Cox models. EuroIntervention. 2014;10:285–288.
    1. van Vark LC, Lesman‐Leegte I, Baart SJ, Postmus D, Pinto YM, Orsel JG, Westenbrink BD, Brunner‐la Rocca HP, van Miltenburg AJM, Boersma E, Hillege HL, Akkerhuis KM; Investigators T . Prognostic value of serial ST2 measurements in patients with acute heart failure. J Am Coll Cardiol. 2017;70:2378–2388.
    1. van Boven N, Battes LC, Akkerhuis KM, Rizopoulos D, Caliskan K, Anroedh SS, Yassi W, Manintveld OC, Cornel JH, Constantinescu AA, Boersma E, Umans VA, Kardys I. Toward personalized risk assessment in patients with chronic heart failure: detailed temporal patterns of NT‐proBNP, troponin T, and CRP in the Bio‐SHiFT study. Am Heart J. 2018;196:36–48.
    1. Brankovic M, Akkerhuis KM, van Boven N, Anroedh S, Constantinescu A, Caliskan K, Manintveld O, Cornel JH, Baart S, Rizopoulos D, Hillege H, Boersma E, Umans V, Kardys I. Patient‐specific evolution of renal function in chronic heart failure patients dynamically predicts clinical outcome in the Bio‐SHiFT study. Kidney Int. 2018;93:952–960.
    1. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Bohm M, Dickstein K, Falk V, Filippatos G, Fonseca C, Gomez‐Sanchez MA, Jaarsma T, Kober L, Lip GY, Maggioni AP, Parkhomenko A, Pieske BM, Popescu BA, Ronnevik PK, Rutten FH, Schwitter J, Seferovic P, Stepinska J, Trindade PT, Voors AA, Zannad F, Zeiher A; ESC Committee for Practice Guidelines . ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2012;33:1787–1847.
    1. Paulus WJ, Tschope C, Sanderson JE, Rusconi C, Flachskampf FA, Rademakers FE, Marino P, Smiseth OA, De Keulenaer G, Leite‐Moreira AF, Borbely A, Edes I, Handoko ML, Heymans S, Pezzali N, Pieske B, Dickstein K, Fraser AG, Brutsaert DL. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J. 2007;28:2539–2550.
    1. McAlister FA, Ezekowitz J, Tarantini L, Squire I, Komajda M, Bayes‐Genis A, Gotsman I, Whalley G, Earle N, Poppe KK, Doughty RN; Meta‐analysis Global Group in Chronic Heart Failure (MAGGIC) Investigators . Renal dysfunction in patients with heart failure with preserved versus reduced ejection fraction impact of the new Chronic Kidney Disease‐Epidemiology Collaboration Group formula. Circ Heart Fail. 2012;5:309–314.
    1. National Kidney F . K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39:S1–S266.
    1. World Health Organization . Classification of diseases (ICD) [Internet]. Available at: . Accessed June 15, 2018.
    1. Solier C, Langen H. Antibody‐based proteomics and biomarker research—current status and limitations. Proteomics. 2014;14:774–783.
    1. Assarsson E, Lundberg M, Holmquist G, Bjorkesten J, Thorsen SB, Ekman D, Eriksson A, Rennel Dickens E, Ohlsson S, Edfeldt G, Andersson AC, Lindstedt P, Stenvang J, Gullberg M, Fredriksson S. Homogenous 96‐plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability. PLoS One. 2014;9:e95192.
    1. Rizopoulos D. The R package JMbayes for fitting joint models for longitudinal and time‐to‐event data using MCMC. arXiv preprint arXiv:14047625. 2014. Available at: . Accessed August 8, 2018.
    1. Rizopoulos D. Dynamic predictions and prospective accuracy in joint models for longitudinal and time‐to‐event data. Biometrics. 2011;67:819–829.
    1. Rizopoulos D. Joint Models for Longitudinal and Time‐to‐Event Data: With Applications in R. Boca Raton, FL: Chapman and Hall/CRC; 2012.
    1. Nyholt DR. A simple correction for multiple testing for single‐nucleotide polymorphisms in linkage disequilibrium with each other. Am J Hum Genet. 2004;74:765–769.
    1. Li J, Ji L. Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity (Edinb). 2005;95:221–227.
    1. Pinheiro J, Bates D, DebRoy S, Sarkar D. R Core Team (2014) nlme: linear and nonlinear mixed effects models. R package version 3.1‐117. 2014. Available at: . Accessed August 8, 2018.
    1. Nyholt DR. Matrix Spectral Decomposition (matSpD)—estimate the equivalent number of independent variables in a correlation (r) matrix. Available at: . Accessed November 11, 2017.
    1. Januzzi JL, Pascual‐Figal D, Daniels LB. ST2 testing for chronic heart failure therapy monitoring: the International ST2 Consensus Panel. Am J Cardiol. 2015;115:70B–75B.
    1. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Colvin MM, Drazner MH, Filippatos GS, Fonarow GC, Givertz MM, Hollenberg SM, Lindenfeld J, Masoudi FA, McBride PE, Peterson PN, Stevenson LW, Westlake C. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation. 2017;136:e137–e161.
    1. Dumic J, Dabelic S, Flogel M. Galectin‐3: an open‐ended story. Biochim Biophys Acta. 2006;1760:616–635.
    1. de Boer RA, Voors AA, Muntendam P, van Gilst WH, van Veldhuisen DJ. Galectin‐3: a novel mediator of heart failure development and progression. Eur J Heart Fail. 2009;11:811–817.
    1. Chen A, Hou W, Zhang Y, Chen Y, He B. Prognostic value of serum galectin‐3 in patients with heart failure: a meta‐analysis. Int J Cardiol. 2015;182:168–170.
    1. Felker GM, Fiuzat M, Shaw LK, Clare R, Whellan DJ, Bettari L, Shirolkar SC, Donahue M, Kitzman DW, Zannad F, Pina IL, O'Connor CM. Galectin‐3 in ambulatory patients with heart failure: results from the HF‐ACTION study. Circ Heart Fail. 2012;5:72–78.
    1. Gullestad L, Ueland T, Kjekshus J, Nymo SH, Hulthe J, Muntendam P, McMurray JJ, Wikstrand J, Aukrust P. The predictive value of galectin‐3 for mortality and cardiovascular events in the Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA). Am Heart J. 2012;164:878–883.
    1. Motiwala SR, Szymonifka J, Belcher A, Weiner RB, Baggish AL, Sluss P, Gaggin HK, Bhardwaj A, Januzzi JL. Serial measurement of galectin‐3 in patients with chronic heart failure: results from the ProBNP Outpatient Tailored Chronic Heart Failure Therapy (PROTECT) study. Eur J Heart Fail. 2013;15:1157–1163.
    1. Heger J, Schiegnitz E, von Waldthausen D, Anwar MM, Piper HM, Euler G. Growth differentiation factor 15 acts anti‐apoptotic and pro‐hypertrophic in adult cardiomyocytes. J Cell Physiol. 2010;224:120–126.
    1. Chan MM, Santhanakrishnan R, Chong JP, Chen Z, Tai BC, Liew OW, Ng TP, Ling LH, Sim D, Leong KT, Yeo PS, Ong HY, Jaufeerally F, Wong RC, Chai P, Low AF, Richards AM, Lam CS. Growth differentiation factor 15 in heart failure with preserved vs. reduced ejection fraction. Eur J Heart Fail. 2016;18:81–88.
    1. Li YY, McTiernan CF, Feldman AM. Interplay of matrix metalloproteinases, tissue inhibitors of metalloproteinases and their regulators in cardiac matrix remodeling. Cardiovasc Res. 2000;46:214–224.
    1. Heymans S, Schroen B, Vermeersch P, Milting H, Gao F, Kassner A, Gillijns H, Herijgers P, Flameng W, Carmeliet P, Van de Werf F, Pinto YM, Janssens S. Increased cardiac expression of tissue inhibitor of metalloproteinase‐1 and tissue inhibitor of metalloproteinase‐2 is related to cardiac fibrosis and dysfunction in the chronic pressure‐overloaded human heart. Circulation. 2005;112:1136–1144.
    1. Morishita T, Uzui H, Mitsuke Y, Amaya N, Kaseno K, Ishida K, Fukuoka Y, Ikeda H, Tama N, Yamazaki T, Lee JD, Tada H. Association between matrix metalloproteinase‐9 and worsening heart failure events in patients with chronic heart failure. ESC Heart Fail. 2017;4:321–330.
    1. Nilsson L, Hallen J, Atar D, Jonasson L, Swahn E. Early measurements of plasma matrix metalloproteinase‐2 predict infarct size and ventricular dysfunction in ST‐elevation myocardial infarction. Heart. 2012;98:31–36.
    1. Bencsik P, Sasi V, Kiss K, Kupai K, Kolossvary M, Maurovich‐Horvat P, Csont T, Ungi I, Merkely B, Ferdinandy P. Serum lipids and cardiac function correlate with nitrotyrosine and MMP activity in coronary artery disease patients. Eur J Clin Invest. 2015;45:692–701.
    1. Täger T, Wiebalck C, Frohlich H, Corletto A, Katus HA, Frankenstein L. Biological variation of extracellular matrix biomarkers in patients with stable chronic heart failure. Clin Res Cardiol. 2017;106:974–985.
    1. Luan Y, Xu W. The structure and main functions of aminopeptidase N. Curr Med Chem. 2007;14:639–647.

Source: PubMed

3
Subscribe