Deep Bayesian networks for uncertainty estimation and adversarial resistance of white matter hyperintensity segmentation

Parisa Mojiri Forooshani, Mahdi Biparva, Emmanuel E Ntiri, Joel Ramirez, Lyndon Boone, Melissa F Holmes, Sabrina Adamo, Fuqiang Gao, Miracle Ozzoude, Christopher J M Scott, Dar Dowlatshahi, Jane M Lawrence-Dewar, Donna Kwan, Anthony E Lang, Karine Marcotte, Carol Leonard, Elizabeth Rochon, Chris Heyn, Robert Bartha, Stephen Strother, Jean-Claude Tardif, Sean Symons, Mario Masellis, Richard H Swartz, Alan Moody, Sandra E Black, Maged Goubran, Parisa Mojiri Forooshani, Mahdi Biparva, Emmanuel E Ntiri, Joel Ramirez, Lyndon Boone, Melissa F Holmes, Sabrina Adamo, Fuqiang Gao, Miracle Ozzoude, Christopher J M Scott, Dar Dowlatshahi, Jane M Lawrence-Dewar, Donna Kwan, Anthony E Lang, Karine Marcotte, Carol Leonard, Elizabeth Rochon, Chris Heyn, Robert Bartha, Stephen Strother, Jean-Claude Tardif, Sean Symons, Mario Masellis, Richard H Swartz, Alan Moody, Sandra E Black, Maged Goubran

Abstract

White matter hyperintensities (WMHs) are frequently observed on structural neuroimaging of elderly populations and are associated with cognitive decline and increased risk of dementia. Many existing WMH segmentation algorithms produce suboptimal results in populations with vascular lesions or brain atrophy, or require parameter tuning and are computationally expensive. Additionally, most algorithms do not generate a confidence estimate of segmentation quality, limiting their interpretation. MRI-based segmentation methods are often sensitive to acquisition protocols, scanners, noise-level, and image contrast, failing to generalize to other populations and out-of-distribution datasets. Given these concerns, we propose a novel Bayesian 3D convolutional neural network with a U-Net architecture that automatically segments WMH, provides uncertainty estimates of the segmentation output for quality control, and is robust to changes in acquisition protocols. We also provide a second model to differentiate deep and periventricular WMH. Four hundred thirty-two subjects were recruited to train the CNNs from four multisite imaging studies. A separate test set of 158 subjects was used for evaluation, including an unseen multisite study. We compared our model to two established state-of-the-art techniques (BIANCA and DeepMedic), highlighting its accuracy and efficiency. Our Bayesian 3D U-Net achieved the highest Dice similarity coefficient of 0.89 ± 0.08 and the lowest modified Hausdorff distance of 2.98 ± 4.40 mm. We further validated our models highlighting their robustness on "clinical adversarial cases" simulating data with low signal-to-noise ratio, low resolution, and different contrast (stemming from MRI sequences with different parameters). Our pipeline and models are available at: https://hypermapp3r.readthedocs.io.

Trial registration: ClinicalTrials.gov NCT02330510.

Keywords: Bayesian neural networks; adversarial attacks; deep learning; image segmentation; uncertainty estimation; vascular lesions; white matter hyperintensity.

Conflict of interest statement

The authors declare that they have no conflicts of interest.

© 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.

Figures

FIGURE 1
FIGURE 1
(a) Proposed architecture for the Bayesian 3D U‐Net convolutional neural network with residual blocks and dilated convolutions. (b) Overall inference pipeline to generate WMH segmentation and uncertainty maps as well as a second network to differentiate dWMH and pvWMH. dWMH, deep white matter hyperintensity; pvWMH, periventricular white matter hyperintensity; WMH, white matter hyperintensity
FIGURE 2
FIGURE 2
An example of WMH segmentation and uncertainty estimation, showing on a FLAIR scan, the Bayesian model's prediction and estimated epistemic uncertainty in (a) axial, (b) sagittal, and (c) coronal views. Blue represents the overlap between ground truth and prediction, red (and green arrow heads) represents ground truth voxels missing in prediction (undersegmentation), green (and green arrow heads) represents prediction voxels not in the ground truth (oversegmentation). Red boxes represent “false‐positive” voxels (model predictions) that are indeed positive voxels and were missed in the manual editing of the semiautomated ground truth labels. FLAIR, fluid‐attenuated inversion recovery; WMH, white matter hyperintensity
FIGURE 3
FIGURE 3
Evaluation of WMH segmentations across tested methods using the following metrics: Dice similarity coefficient, modified Hausdorff distance (HD95), absolute volume difference (%), and Lesion F1. not significant: ns, p < .05: *; p < .01: **; p < .001: ***; p < .0001: ****. WMH, white matter hyperintensity
FIGURE 4
FIGURE 4
Visual comparison of the tested methods in an example subject. Blue represents the overlap between ground truth and prediction (true‐positive voxels), red (and red arrows) represents ground truth voxels missing in prediction (false‐negative voxels), green (and green arrows) represents prediction voxels not in ground truth (false‐positive voxels)
FIGURE 5
FIGURE 5
WMH segmentation and uncertainty maps of cases with the highest (a) and lowest (b) Dice similarity coefficients from the test set. Red arrowheads and circles highlight areas of under‐segmented and green arrowheads and circles highlight areas that were over‐segmented. Red boxes represent an enlarged perivascular space (PVS) in the frontal lobe that was mislabelled as WMH in the ground truth data, but accurately not captured by our model as WMH. WMH, white matter hyperintensity
FIGURE 6
FIGURE 6
An example of WMH segmentation on a FLAIR scan (axial, sagittal, and coronal views), showing the Bayesian model's total WMH prediction, dWMH and pvWMH prediction, as well as ground truth labels. Blue labels represent Bayesian model WMH prediction, red labels represent dWMH, and green labels represent pvWMH. dWMH, deep white matter hyperintensity; FLAIR, fluid‐attenuated inversion recovery; pvWMH, periventricular white matter hyperintensity; WMH, white matter hyperintensity
FIGURE 7
FIGURE 7
WMH segmentation and uncertainty estimates using our Bayesian model under three types of adversarial attacks applied to the same subject (the addition of noise with a sigma of 0.2, downsampling of resolution by a factor of 2 × 2 × 2, and changing contrast with 0.5 gamma). WMH, white matter hyperintensity
FIGURE 8
FIGURE 8
Evaluation of WMH segmentation on cases with increased noise. Not significant: ns, p < .05: *; p < .01: **; p < .001: ***; p < .0001: ***. WMH, white matter hyperintensity
FIGURE 9
FIGURE 9
Visual comparison of the segmentation methods under three types of adversarial attacks (the addition of gamma noise with a sigma of 0.2, downsampling of resolution by a factor of 2 × 2 × 2, and changing contrast with 0.5 gamma)

References

    1. Blundell, C. , Cornebise, J. , Kavukcuoglu, K. , & Wierstra, D. (2015). Weight uncertainty in neural network. In Bach F. & Blei D. (Eds.), Proceedings of the 32nd international conference on machine learning (Vol. 37, pp. 1613–1622). Proceedings of Machine Learning Research. Lille, France: PMLR.
    1. Carmichael, O. , Schwarz, C. , Drucker, D. , Fletcher, E. , Harvey, D. , Beckett, L. , … Alzheimer's Disease Neuroimaging Initiative . (2010). Longitudinal changes in white matter disease and cognition in the first year of the Alzheimer disease neuroimaging initiative. Archives of Neurology, 67(11), 1370–1378.
    1. Çiçek, Ö. , Abdulkadir, A. , Lienkamp, S. S. , Brox, T. , & Ronneberger, O. (2016). 3D U‐net: Learning dense volumetric segmentation from sparse annotation. In Medical Image Computing and Computer‐Assisted Intervention ‐‐ MICCAI 2016 (pp. 424–432). Cham: Springer International Publishing.
    1. Dadar, M. , Maranzano, J. , Ducharme, S. , Carmichael, O. T. , Charles Decarli, D. , Collins, L. , & Alzheimer's Disease Neuroimaging Initiative . (2018). Validation of T1w‐based segmentations of white matter Hyperintensity volumes in large‐scale datasets of aging. Human Brain Mapping, 39(3), 1093–1107.
    1. Debette, S. , & Markus, H. S. (2010). The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: Systematic review and meta‐analysis. BMJ, 341, c3666.
    1. Farhan, S. M. K. , Bartha, R. , Black, S. E. , Corbett, D. , Finger, E. , Freedman, M. , … Strong, M. J. (2017). The Ontario neurodegenerative Disease research Initiative (ONDRI). The Canadian Journal of Neurological Sciences, 44(2), 196–202.
    1. Gal, Y. , & Ghahramani, Z. (2016). Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. Proceedings of the 33rd International Conference on Machine Learning, 48, 1050–1059.
    1. Goubran, M. , Ntiri, E. E. , Akhavein, H. , Holmes, M. , Nestor, S. , Ramirez, J. , … Black, S. E. (2019). Hippocampal segmentation for brains with extensive atrophy using three‐dimensional convolutional neural networks. Human Brain Mapping., 41, 291–308. 10.1002/hbm.24811
    1. Graves, A. (2011). Practical variational inference for neural networks. In Advances in neural information processing systems (pp. 2348–2356). Princeton, NJ: Citeseer.
    1. Griffanti, L. , Zamboni, G. , Khan, A. , Li, L. , Bonifacio, G. , Sundaresan, V. , … Jenkinson, M. (2016). BIANCA (brain intensity AbNormality classification algorithm): A new tool for automated segmentation of white matter hyperintensities. NeuroImage, 141, 191–205.
    1. Gudbjartsson, H. , & Patz, S. (1995). The Rician distribution of noisy MRI data. Magnetic Resonance in Medicine, 34(6), 910–914.
    1. Guerrero, R. , Qin, C. , Oktay, O. , Bowles, C. , Chen, L. , Joules, R. , … Rueckert, D. (2018). White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks. NeuroImage: Clinical, 17, 918–934.
    1. He, K. , Zhang, X. , Ren, S. , & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770–778.
    1. Herrmann, L. L. , Le Masurier, M. , & Ebmeier, K. P. (2008). White matter Hyperintensities in late life depression: A systematic review. Journal of Neurology, Neurosurgery, and Psychiatry, 79(6), 619–624.
    1. Heuvel, D. M. J. v. d. (2006). Increase in periventricular white matter Hyperintensities parallels decline in mental processing speed in a non‐demented elderly population. Journal of Neurology, Neurosurgery, and Psychiatry., 77, 149–153. 10.1136/jnnp.2005.070193
    1. Hong, J. , Park, B.‐Y. , Lee, M. J. , Chung, C.‐S. , Cha, J. , & Park, H. (2020). Two‐step deep neural network for segmentation of deep white matter Hyperintensities in Migraineurs. Computer Methods and Programs in Biomedicine, 183, 105065.
    1. Ioffe, S. , & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. ICML'15: Proceedings of the 32nd International Conference on International Conference on Machine Learning. 37, 448–456.
    1. Jeon, S. , Yoon, U. , Park, J.‐S. , Seo, S. W. , Kim, J.‐H. , Kim, S. T. , … Lee, J.‐M. (2011). Fully automated pipeline for quantification and localization of white matter Hyperintensity in brain magnetic resonance image. International Journal of Imaging Systems and Technology, 21(2), 193–200.
    1. Jokinen, H. , Koikkalainen, J. , Laakso, H. M. , Melkas, S. , Nieminen, T. , Brander, A. , … Erkinjuntti, T. (2020). Global burden of small vessel disease‐related brain changes on MRI predicts cognitive and functional decline. Stroke; a Journal of Cerebral Circulation, 51(1), 170–178.
    1. Kamnitsas, K. , Ledig, C. , Newcombe, V. F. J. , Simpson, J. P. , Kane, A. D. , Menon, D. K. , … Glocker, B. (2017). Efficient multi‐scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Medical Image Analysis, 36, 61–78.
    1. Keith, J. , Gao, F.‐Q. , Noor, R. , Kiss, A. , Balasubramaniam, G. , Kelvin, A. , … Black, S. E. (2017). Collagenosis of the deep medullary veins: An Underrecognized pathologic correlate of white matter Hyperintensities and periventricular infarction? Journal of Neuropathology and Experimental Neurology, 76(4), 299–312.
    1. Kendall, A. , Badrinarayanan, V. , & Cipolla, R. (2017). Bayesian SegNet: Model uncertainty in deep convolutional encoder‐decoder architectures for scene understanding. Procedings of the British Machine Vision Conference. 57.1–57.12. 10.5244/c.31.57
    1. Kendall, A. , & Gal, Y. (2017). What uncertainties do we need in Bayesian deep learning for computer vision? In Guyon I., Luxburg U. V., Bengio S., Wallach H., Fergus R., Vishwanathan S., & Garnett R. (Eds.), Advances in neural information processing systems 30 (pp. 5574–5584). Curran Associates, Inc.
    1. Kilgore, C. B. , Strain, J. F. , Benzinger, T. L. S. , Morris, J. C. , & Ances, B. M. (2020). Increases in periventricular white matter Hyperintensities associate with Alzheimer Disease biomarkers: Neuroimaging/multi‐modal comparisons. Alzheimer's & Dementia: The Journal of the Alzheimer's Association, 16, e041286.
    1. Kingma, D. P. , & Ba, J. (2015). Adam: A method for stochastic optimization. The 3rd International Conference for Learning Representations, San Diego.
    1. Lakshminarayanan, B. , Pritzel, A. , & Blundell, C. (2017). Simple and scalable predictive uncertainty estimation using deep ensembles. 31st Conference on Neural Information Processing Systems, Long Beach.
    1. LeCun, Y. , Bengio, Y. , & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.
    1. Lee, S. , Viqar, F. , Zimmerman, M. E. , Narkhede, A. , Tosto, G. , Benzinger, T. L. S. , … for the Dominantly Inherited Alzheimer Network . (2016). White matter Hyperintensities are a core feature of Alzheimer's Disease: Evidence from the dominantly inherited Alzheimer network. Annals of Neurology, 79, 929–939. 10.1002/ana.24647
    1. Lee, S.‐J. , Kim, J.‐S. , Yoo, J.‐Y. , Song, I.‐U. , Kim, B.‐S. , Jung, S.‐L. , … Lee, K.‐S. (2010). Influence of white matter hyperintensities on the cognition of patients with Parkinson disease. Alzheimer Disease and Associated Disorders, 24(3), 227–233.
    1. Li, H. , Jiang, G. , Zhang, J. , Wang, R. , Wang, Z. , Zheng, W.‐S. , & Menze, B. (2018). Fully convolutional network ensembles for white matter Hyperintensities segmentation in MR images. NeuroImage, 183, 650–665.
    1. Marcotte, K. , Graham, N. L. , Fraser, K. C. , Meltzer, J. A. , Tang‐Wai, D. F. , Chow, T. W. , … Rochon, E. (2017). White matter disruption and connected speech in non‐fluent and semantic variants of primary progressive aphasia. Dementia and Geriatric Cognitive Disorders Extra, 7(1), 52–73.
    1. Milletari, F. , Navab, N. , & Ahmadi, S. (2016). V‐net: Fully convolutional neural networks for volumetric medical image segmentation. In 2016 Fourth International Conference on 3D Vision (3DV) (pp. 565–571).
    1. Nalepa, J. , Marcinkiewicz, M. , & Kawulok, M. (2019). Data augmentation for brain‐tumor segmentation: A review. Frontiers in Computational Neuroscience, 13, 83.
    1. Neal, R. M. (1996). Bayesian learning for neural networks. (Vol.118), New York, NY: Springer Science & Business Media.
    1. Ntiri, E. E. , Holmes, M. F. , Forooshani, P. M. , Ramirez, J. , Gao, F. , Ozzoude, M. , … Goubran, M. (2021). Improved segmentation of the intracranial and ventricular volumes in populations with cerebrovascular lesions and atrophy using 3D CNNs. Neuroinformatics, 19, 597–618. 10.1007/s12021-021-09510-1
    1. Paschali, M. , Conjeti, S. , Navarro, F. , & Navab, N. (2018). Generalizability vs. robustness: Investigating medical imaging networks using adversarial examples. In Medical image computing and computer assisted intervention – MICCAI 2018 (pp. (Vol.11070, 493–501). Cham: Springer International Publishing. 10.1007/978-3-030-00928-1_56
    1. Pearson, K. , & Galton, F. (1895). VII. Note on regression and inheritance in the case of two parents. Proceedings of the Royal Society of London, 58(347–352), 240–242.
    1. Prins, N. D. , & Scheltens, P. (2015). White matter hyperintensities, cognitive impairment and dementia: An update. Nature Reviews Neurology, 11(3), 157–165.
    1. Ramirez, J. , Gibson, E. , Quddus, A. , Lobaugh, N. J. , Feinstein, A. , Levine, B. , … Black, S. E. (2011). Lesion explorer: A comprehensive segmentation and parcellation package to obtain regional volumetrics for subcortical hyperintensities and intracranial tissue. NeuroImage, 54(2), 963–973.
    1. Ramirez, J. , Scott, C. J. M. , McNeely, A. A. , Berezuk, C. , Gao, F. , Szilagyi, G. M. , & Black, S. E. (2014). Lesion explorer: A video‐guided, standardized protocol for accurate and reliable MRI‐derived volumetrics in Alzheimer's disease and normal elderly. Journal of Visualized Experiments, ((86). 10.3791/50887
    1. Reinhold, J. C. , Dewey, B. E. , Carass, A. , & Prince, J. L. (2019). Evaluating the impact of intensity normalization on MR image synthesis. Proceedings of SPIE‐‐the International Society for Optical Engineering.
    1. Ronneberger, O. , Fischer, P. , & Brox, T. (2015). U‐net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer‐Assisted Intervention ‐‐ MICCAI 2015 (pp. 234–241).Cham: Springer International Publishing.
    1. Rozsa, A. , Gunther, M. , & Boult, T. E. (2018). Towards robust deep neural networks with BANG. In 2018 IEEE Winter Conference on Applications of Computer Vision (WACV) (pp. 803–811).
    1. Smith, E. E. , Egorova, S. , Blacker, D. , Killiany, R. J. , Muzikansky, A. , Dickerson, B. C. , … Guttmann, C. R. G. (2008). Magnetic resonance imaging white matter Hyperintensities and brain volume in the prediction of mild cognitive impairment and dementia. Archives of Neurology, 65(1), 94–100.
    1. Sundaresan, V. , Zamboni, G. , Le Heron, C. , Rothwell, P. M. , Husain, M. , Battaglini, M. , … Griffanti, L. (2019). Automated lesion segmentation with BIANCA: Impact of population‐level features, classification algorithm and locally adaptive thresholding. NeuroImage, 202, 116056.
    1. Swardfager, W. , Di, Y. , Scola, G. , Cogo‐Moreira, H. , Chan, P. , Zou, Y. , et al. (2017). Peripheral lipid oxidative stress markers are related to vascular risk factors and subcortical small vessel disease. Neurobiology of Aging, 59, 91–97.
    1. Tustison, N. J. , Avants, B. B. , Cook, P. A. , Zheng, Y. , Egan, A. , Yushkevich, P. A. , & Gee, J. C. (2010). N4ITK: Improved N3 bias correction. IEEE Transactions on Medical Imaging, 29(6), 1310–1320.
    1. Valdés Hernández, M. C. , Piper, R. J. , Bastin, M. E. , Royle, N. A. , Muñoz Maniega, S. , Aribisala, B. S. , … Wardlaw, J. M. (2014). Morphologic, distributional, volumetric, and intensity characterization of periventricular hyperintensities. American Journal of Neuroradiology, 35(1), 55–62.
    1. Wang, G. , Li, W. , Aertsen, M. , Deprest, J. , Ourselin, S. , & Vercauteren, T. (2019). Aleatoric uncertainty estimation with test‐time augmentation for medical image segmentation with convolutional neural networks. Neurocomputing, 335, 34–45.
    1. Wang, Y. , Catindig, J. A. , Hilal, S. , Soon, H. W. , Ting, E. , Wong, T. Y. , … Qiu, A. (2012). Multi‐stage segmentation of white matter Hyperintensity, cortical and lacunar infarcts. NeuroImage, 60(4), 2379–2388.
    1. Wardlaw, J. M. , Valdés, M. C. , & Hernández, and Susana Muñoz‐Maniega . (2015). What are white matter hyperintensities made of? Journal of the American Heart Association., 4(6), 10.1161/jaha.114.001140
    1. Wu, J. , Zhang, Y. , Wang, K. , & Tang, X. (2019). Skip connection U‐net for white matter hyperintensities segmentation from MRI. IEEE Access., 7, 155194–155202. 10.1109/access.2019.2948476
    1. Yoo, B. I. , Lee, J. J. , Han, J. W. , San Yeo Wool, O. , Lee, E. Y. , MacFall, J. R. , … Kim, K. W. (2014). Application of variable threshold intensity to segmentation for white matter hyperintensities in fluid attenuated inversion recovery magnetic resonance images. Neuroradiology, 56(4), 265–281.
    1. Yu, F. , & Koltun, V. (2016). Multi‐scale context aggregation by dilated convolutions. CoRR.
    1. Zhang, Z. , Powell, K. , Yin, C. , Cao, S. , Gonzalez, D. , Hannawi, Y. , & Zhang, P. (2020). Brain atlas guided attention U‐net for white matter Hyperintensity segmentation. ArXiv.
    1. Zhu, Y. , & Zabaras, N. (2018). Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification. Journal of Computational Physics, 366, 415–447.

Source: PubMed

3
Subscribe