Influence of Music on Anxiety Induced by Fear of Heights in Virtual Reality

Sofia Seinfeld, Ilias Bergstrom, Ausias Pomes, Jorge Arroyo-Palacios, Francisco Vico, Mel Slater, Maria V Sanchez-Vives, Sofia Seinfeld, Ilias Bergstrom, Ausias Pomes, Jorge Arroyo-Palacios, Francisco Vico, Mel Slater, Maria V Sanchez-Vives

Abstract

Music is a potent mood regulator that can induce relaxation and reduce anxiety in different situations. While several studies demonstrate that certain types of music have a subjective anxiolytic effect, the reported results from physiological responses are less conclusive. Virtual reality allows us to study diverse scenarios of real life under strict experimental control while preserving high ecological validity. We aimed to study the modulating effect of music on the anxiety responses triggered by an immersive virtual reality scenario designed to induce fear of heights. Subjects experienced a virtual scenario depicting an exterior elevator platform ascending and descending the total height of its 350 meters tall supporting structure. Participants were allocated to either a group that experienced the elevator ride with background music or without, in a between-groups design. Furthermore, each group included participants with different degrees of fear of heights, ranging from low to high fear. Recordings of heart rate, galvanic skin response, body balance, and head movements were obtained during the experiments. Subjective anxiety was measured by means of three questionnaires. The scenario produced significant changes in subjective and physiological measures, confirming its efficacy as a stressor. A significant increase in state anxiety was found between pre and post-assessment in the silence group, but not in the music group, indicating that post-stress recovery was faster in the musical group. Results suggest that music can ameliorate the subjective anxiety produced by fear of heights.

Keywords: anxiety; fear of heights; music; therapy; virtual reality.

Figures

FIGURE 1
FIGURE 1
(A) View of the city from the top floor. The participant is wearing the active-stereo glasses for stereoscopic vision. For the sake of clarity, the image has been displayed in mono; (B) First person perspective of the elevator ascending. Notice that the feet of the participant can be seen at the border of the virtual elevator, blending in with the virtual environment.
FIGURE 2
FIGURE 2
Boxplot of VR related questions (Table 3) for the variables presence, realism, stressful, real vs virtual, fear of falling, and attention paid to the scene, sound of the elevator and the beep sound.
FIGURE 3
FIGURE 3
(A) Subjective Units of Discomfort Scores (SUDS) reported on each floor in the music condition while subjects ascended and descended in the elevator; (B) SUDS reported on each floor in the no-music condition while subjects ascended and descended in the elevator; (C) Mean of SUDS reported as subjects ascended or descended through the elevator in the music and no-music condition.
FIGURE 4
FIGURE 4
Boxplot of dSTAI, which is the difference between the post-assessment STAI and the pre-assessment STAI, between the music and no-music conditions.
FIGURE 5
FIGURE 5
Scatter plot of the linear correlation between Acrophobia Questionnaire (AQ) scores and percentage of change in heart rate (HR) values when subjects ascended in the elevator.

References

    1. Allen K., Blascovich J. (1994). Effects of music on cardiovascular reactivity among surgeons. JAMA J. Am. Med. Assoc. 272 882–884. 10.1001/jama.1994.03520110062030
    1. Bergstrom I., Seinfeld S., Arroyo-Palacios J., Slater M., Sanchez-Vives M. V. (2014). Using music as a signal for biofeedback. Int. J. Psychophysiol. 93 140–149. 10.1016/j.ijpsycho.2013.04.013
    1. Bles W., Kapteyn T. (1980). The mechanism of physiological height vertigo: II. Posturography. Acta Otolaryngol. 89 534–540. 10.3109/00016488009127171
    1. Boffino C. C., de Sá C. S. C., Gorenstein C., Brown R. G., Basile L. F. H., Ramos R. T. (2009). Fear of heights: cognitive performance and postural control. Eur. Arch. Psychiatry Clin. Neurosci. 259 114–119. 10.1007/s00406-008-0843-6
    1. Bohil C. J., Alicea B., Biocca F. A. (2011). Virtual reality in neuroscience research and therapy. Nat. Rev. Neurosci. 12 752–762. 10.1038/nrn3122
    1. Botella C., Perpiña C., Baños R., Garcia-Palacios A. (1998). “Virtual reality: a new clinical setting lab,” in Virtual Environments in Clinical Psychology and Neuroscience, eds Riva G., Wiederhold B., Molinari E. (Amsterdam: IOS Press; ).
    1. Burns J. L., Labbé E., Arke B., Capeless K., Cooksey B., Steadman A., et al. (2002). The effects of different types of music on perceived and physiological measures of stress. J. Music Ther. 39 101–116. 10.1093/jmt/39.2.101
    1. Campbell D., Stanley J., Gage N. (1963). Experimental and Quasi-Experimental Designs for Research. Palo Alto, CA: American Educational Research.
    1. Chafin S., Roy M., Gerin W., Christenfeld N. (2004). Music can facilitate blood pressure recovery from stress. Br. J. Health Psychol. 9 393–403. 10.1348/1359107041557020
    1. Chrousos G. (2009). Stress and disorders of the stress system. Nat. Rev. Endocrinol. 5 374–381. 10.1038/nrendo.2009.106
    1. Cleworth T. W., Horslen B. C., Carpenter M. G. (2012). Influence of real and virtual heights on standing balance. Gait Posture 36 172–176. 10.1016/j.gaitpost.2012.02.010
    1. Cohen D. C. (1977). Comparison of self-report and overt-behavioral procedures for assessing acrophobia1. Behav. Ther. 8 17–23. 10.1016/S0005-7894(77)80116-0
    1. Cruz-Neira C., Sandin D. J., DeFanti T. A., Kenyon R. V., Hart J. C. (1992). The CAVE: audio visual experience automatic virtual environment. Commun. ACM 35 64–72. 10.1145/129888.129892
    1. Davidson R. J., Scherer K. R., Goldsmith H. H. (2003). Handbook of Affective Sciences. Series in Affective Science. New York, NY: Oxford University Press.
    1. Diaz-Jerez G. (2011). Composing with melomics: delving into the computational world for musical inspiration. Leonardo Music J. 21 13–14. 10.1162/LMJ_a_00053
    1. Dickerson S. S., Kemeny M. E. (2004). Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. Psychol. Bull. 130 355–391. 10.1037/0033-2909.130.3.355
    1. Eifert G. H., Craill L., Carey E., O’Connor C. (1988). Affect modification through evaluative conditioning with music. Behav. Res. Ther. 26 321–330. 10.1016/0005-7967(88)90084-8
    1. Elliott D., Polman R., McGregor R. (2011). Relaxing music for anxiety control. J. Music Ther. 48 264–288. 10.1093/jmt/48.3.264
    1. Grillon C., Duncko R., Covington M. F., Kopperman L., Kling M. A. (2007). Acute stress potentiates anxiety in humans. Biol. Psychiatry 62 1183–1186. 10.1016/j.biopsych.2007.06.007
    1. Jackson R. E. (2009). Individual differences in distance perception. Proc. Biol. Sci. 276 1665–1669. 10.1098/rspb.2009.0004
    1. Kaplan S. (1995). The restorative benefits of nature: toward an integrative framework. J. Environ. Psychol. 15 169–182. 10.1016/0272-4944(95)90001-2
    1. Katon W., Lin E. H. B., Kroenke K. (2007). The association of depression and anxiety with medical symptom burden in patients with chronic medical illness. Gen. Hosp. Psychiatry 29 147–155. 10.1016/j.genhosppsych.2006.11.005
    1. Kerr T., Walsh J., Marshall A. (2001). Emotional change processes in music-assisted reframing. J. Music Ther. 38 193–211. 10.1093/jmt/38.3.193
    1. Khalfa S., Dalla Bella S., Roy M., Peretz I., Lupien S. J. (2003). Effects of relaxing music on salivary cortisol level after psychological stress. Annal. N. Y. Acad. Sci. 999 374–376. 10.1196/annals.1284.045
    1. Knight W. E., Rickard N. S. (2001). Relaxing music prevents stress-induced increases in subjective anxiety, systolic blood pressure, and heart rate in healthy males and females. J. Music Ther. 38 254–272. 10.1093/jmt/38.4.254
    1. Koelsch S. (2014). Brain correlates of music-evoked emotions. Nat. Rev. Neurosci. 15 170–180. 10.1038/nrn3666
    1. Krijn M., Emmelkamp P. M., Olafsson R. P., Biemond R. (2004). Virtual reality exposure therapy of anxiety disorders: a review. Clin. Psychol. Rev. 24 259–281. 10.1016/j.cpr.2004.04.001
    1. Labbé E., Schmidt N., Babin J., Pharr M. (2007). Coping with stress: the effectiveness of different types of music. Appl. Psychophysiol. Biofeedback 32 163–168. 10.1007/s10484-007-9043-9
    1. Lai H.-L., Chen P.-W., Chen C.-J., Chang H.-K., Peng T.-C., Chang F.-M. (2008). Randomized crossover trial studying the effect of music on examination anxiety. Nurse Educ. Today 28 909–916. 10.1016/j.nedt.2008.05.011
    1. Lupien S. J., McEwen B. S., Gunnar M. R., Heim C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci. 10 434–445. 10.1038/nrn2639
    1. Mandler G., Mandler J. M., Uviller E. T. (1958). Autonomic feedback: the perception of autonomic activity. J. Abnorm. Psychol. 56 367–373. 10.1037/h0048083
    1. Meehan M., Insko B., Whitton M., Brooks F. P. (2002). Physiological measures of presence in stressful virtual environments. ACM Trans. Graph. 21 645–652. 10.1145/566654.566630
    1. Menzies R. G., Parker L. (2001). The origins of height fear: an evaluation of neoconditioning explanations. Behav. Res. Ther. 39 185–199. 10.1016/S0005-7967(99)00177-1
    1. Meyerbröker K., Emmelkamp P. M. G. (2010). Virtual reality exposure therapy in anxiety disorders: a systematic review of process-and-outcome studies. Depress. Anxiety 27 933–944. 10.1002/da.20734
    1. Nilsson U. (2008). The anxiety- and pain-reducing effects of music interventions: a systematic review. AORN J. 87 780–807. 10.1016/j.aorn.2007.09.013
    1. Pan J., Tompkins W. J. (1985). A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 32 230–236. 10.1109/TBME.1985.325532
    1. Pan X., Gillies M., Barker C., Clark D. M., Slater M. (2012). Socially anxious and confident men interact with a forward virtual woman: an experimental study. PLoS ONE 7:e32931 10.1371/journal.pone.0032931
    1. Pelletier C. L. (2004). The effect of music on decreasing arousal due to stress: a meta-analysis. J. Music Ther. 41 192–214. 10.1093/jmt/41.3.192
    1. Powers M. B., Emmelkamp P. M. G. (2008). Virtual reality exposure therapy for anxiety disorders: a meta-analysis. J. Anxiety Disord. 22 561–569. 10.1016/j.janxdis.2007.04.006
    1. Rizzo A., Reger G., Gahm G., Difede J., Rothbaum B. O. (2009). “Virtual reality exposure therapy for combat-related PTSD,” in Post-Traumatic Stress Disorder, eds Shiromani P. J., Keane T. M., LeDaux J. E. (Totowa, NJ: Humana Press; ), 375–399. 10.1007/978-1-60327-329-9_18
    1. Rovira A., Swapp D., Spanlang B., Slater M. (2009). The use of virtual reality in the study of people’s responses to violent incidents. Front. Behav. Neurosci. 3:59 10.3389/neuro.08.059.2009
    1. Sanchez-Vives M. V., Slater M. (2005). From presence to consciousness through virtual reality. Nat. Rev. Neurosci. 6 332–339. 10.1038/nrn1651
    1. Sandstrom G. M., Russo F. A. (2010). Music hath charms: the effects of valence and arousal on recovery following an acute stressor. Music Med. 2 137–143. 10.1177/1943862110371486
    1. Schmidt S., Walach H. (2000). Electrodermal activity (EDA): state-of-the-art measurement and techniques for parapsychological purposes. J. Parapsychol. 64 139–143.
    1. Seisdedos N. (1988). Cuestionario de Ansiedad Estado-Rasgo, Adaptación Española del STAI. Madrid: Tea Ediciones.
    1. Shekhar A., Truitt W., Rainnie D., Sajdyk T. (2005). Role of stress, corticotrophin releasing factor (CRF) and amygdala plasticity in chronic anxiety. Stress 8 209–219. 10.1080/10253890500504557
    1. Simeonov P. I., Hsiao H., DotsonM B. W., Ammons D. E. (2005). Height effects in real and virtual environments. Hum. Factors 47 430–438. 10.1518/0018720054679506
    1. Slater M., Antley A., Davison A., Swapp D., Guger C., Barker C., et al. (2006). A virtual reprise of the Stanley Milgram obedience experiments. PLoS ONE 1:e39 10.1371/journal.pone.0000039
    1. Slater M., Khanna P., Mortensen J., Yu I. (2009). Visual realism enhances realistic response in an immersive virtual environment. IEEE Comput. Graph. Appl. 29 76–84. 10.1109/MCG.2009.55
    1. Slater M., Lotto B., Arnold M. M., Sánchez-Vives M. V. (2014). How we experience immersive virtual environments: the concept of presence and its measurement. Annu. Psicol. 40 193–210.
    1. Spanlang B., Normand J.-M., Borland D., Kilteni K., Giannopoulos E., Pomés S., et al. (2014). How to build an embodiment lab: achieving body representation illusions in virtual reality. Front. Robot. AI. 1:9 10.3389/frobt.2014.00009
    1. Spielberger C. D., Gorsuch R. L., Lushene R., Vagg P. R., Jacobs G. A. (1983). Manual for the State-Trait Anxiety Inventory. Palo Alto, CA: Consulting sychologists ress.
    1. Spielberger C. D., Reheiser E. C. (2009). Assessment of emotions: anxiety, anger, depression, and curiosity. Appl. Psychol. Heal. Well-Being 1 271–302. 10.1111/j.1758-0854.2009.01017.x
    1. Taelman J., Vandeput S., Spaepen A., Van Huffel S. (2009). “Influence of mental stress on heart rate and heart rate variability,” in Proceedings of the 4th European Conference of the International Federation for Medical and Biological Engineering, Antwerp, 1366–1369. 10.1007/978-3-540-89208-3_324
    1. Tanner B. A. (2012). Validity of global physical and emotional SUDS. Appl. Psychophysiol. Biofeedback 37 31–34. 10.1007/s10484-011-9174-x
    1. Thayer J. F., Levenson R. W. (1983). Effects of music on psychophysiological responses to a stressful film. Psychomusicol. A J. Res. Music Cogn. 3 44–52. 10.1037/h0094256
    1. Thoma M. V., La Marca R., Brönnimann R., Finkel L., Ehlert U., Nater U. M. (2013). The effect of music on the human stress response. PLoS ONE 8:e70156 10.1371/journal.pone.0070156
    1. Wiederhold B. K., Jang D. P., Kim S. I., Wiederhold M. D. (2002). Physiological monitoring as an objective tool in virtual reality therapy. Cyberpsychol. Behav. 5 77–82. 10.1089/109493102753685908
    1. Wilhelm F. H., Pfaltz M. C., Gross J. J., Mauss I. B., Kim S. I., Wiederhold B. K. (2005). Mechanisms of virtual reality exposure therapy: the role of the behavioral activation and behavioral inhibition systems. Appl. Psychophysiol. Biofeedback 30 271–284. 10.1007/s10484-005-6383-1
    1. Wolpe J. (1958). Psychotherapy by Reciprocal Inhibition. Palo, Alto, CA: Stanford University Press, 10.1007/BF03000093
    1. Yamamoto M., Naga S., Shimizu J. (2007). Positive musical effects on two types of negative stressful conditions. Psychol. Music 35 249–275. 10.1177/0305735607070375
    1. Yehuda N. (2011). Music and stress. J. Adult Dev. 18 85–94. 10.1007/s10804-010-9117-4
    1. Zentner M., Grandjean D., Scherer K. R. (2008). Emotions evoked by the sound of music: characterization, classification, and measurement. Emotion 8 494–521. 10.1037/1528-3542.8.4.494

Source: PubMed

3
Subscribe