Advances in human B cell phenotypic profiling

Denise A Kaminski, Chungwen Wei, Yu Qian, Alexander F Rosenberg, Ignacio Sanz, Denise A Kaminski, Chungwen Wei, Yu Qian, Alexander F Rosenberg, Ignacio Sanz

Abstract

To advance our understanding and treatment of disease, research immunologists have been called-upon to place more centralized emphasis on impactful human studies. Such endeavors will inevitably require large-scale study execution and data management regulation ("Big Biology"), necessitating standardized and reliable metrics of immune status and function. A well-known example setting this large-scale effort in-motion is identifying correlations between eventual disease outcome and T lymphocyte phenotype in large HIV-patient cohorts using multiparameter flow cytometry. However, infection, immunodeficiency, and autoimmunity are also characterized by correlative and functional contributions of B lymphocytes, which to-date have received much less attention in the human Big Biology enterprise. Here, we review progress in human B cell phenotyping, analysis, and bioinformatics tools that constitute valuable resources for the B cell research community to effectively join in this effort.

Keywords: B lymphocyte; autoimmunity; data clustering; data management; flow cytometry; human.

Figures

Figure 1
Figure 1
Human B cell subsets identified with an established memory B cell fluorescent reagent panel (see Wei et al., 2011). Schematized flow cytometry plot (gated on viable PBMC CD19+ B cells) indicates four core B cell subsets (gray ovals) defined by CD27 and IgD expression. SwMe, switched memory; DN, double-negative; NSM, non-switched memory. The naïve core subset can be further subdivided into transitional and mature-naïve B cells. Distinguishing T3 from mature-naïve requires a mitochondrial dye extrusion step not included in the memory B cell panel. The switched memory and CD27+/int memory-phenotype core subsets can be further evaluated for changes (thick red and green arrows) in the indicated markers known to be associated with B cell activation.
Figure 2
Figure 2
Event clusters identified by FLOCK analysis. FLOCK (Qian et al., 2010) version 1.0 was run unsupervised on human PBMC stained with the 12-color memory B cell reagent panel described in OMIP-003 (Wei et al., 2011) pre-gated on single, viable CD19+ lymphoid events. (A) Overlay of 25 populations, indicated in unique colors, identified in the sample displayed as two-dimensional plots. (B) Representative event clusters of the indicated Patterns based on CD27 versus IgD signals. Numbers below the plots indicate IDs of populations (see Table 3) with similar event distributions as displayed in the corresponding plot. (C) Population 19 displayed as all parameters analyzed by FLOCK. In (B,C), whiteevents on the gray background are the total CD19+ population, for reference. Characteristics of all 25 populations can be found in Table 3.

References

    1. Abdulahad W. H., Meijer J. M., Kroese F. G., Meiners P. M., Vissink A., Spijkervet F. K., et al. (2011). B cell reconstitution and T helper cell balance after rituximab treatment of active primary Sjogren’s syndrome: a double-blind, placebo-controlled study. Arthritis Rheum. 63, 1116–112310.1002/art.30236
    1. Agematsu K., Nagumo H., Yang F. C., Nakazawa T., Fukushima K., Ito S., et al. (1997). B cell subpopulations separated by CD27 and crucial collaboration of CD27+ B cells and helper T cells in immunoglobulin production. Eur. J. Immunol. 27, 2073–207910.1002/eji.1830270835
    1. Aghaeepour N., Chattopadhyay P. K., Ganesan A., O’Neill K., Zare H., Jalali A., et al. (2012). Early immunologic correlates of HIV protection can be identified from computational analysis of complex multivariate T-cell flow cytometry assays. Bioinformatics 28, 1009–101610.1093/bioinformatics/bts082
    1. Ait-Oufella H., Herbin O., Bouaziz J. D., Binder C. J., Uyttenhove C., Laurans L., et al. (2010). B cell depletion reduces the development of atherosclerosis in mice. J. Exp. Med. 207, 1579–158710.1084/jem.20100155
    1. Amanna I. J., Carlson N. E., Slifka M. K. (2007). Duration of humoral immunity to common viral and vaccine antigens. N. Engl. J. Med. 357, 1903–191510.1056/NEJMoa066092
    1. Amel Kashipaz M. R., Huggins M. L., Lanyon P., Robins A., Powell R. J., Todd I. (2003). Assessment of Be1 and Be2 cells in systemic lupus erythematosus indicates elevated interleukin-10 producing CD5+ B cells. Lupus 12, 356–36310.1191/0961203303lu338oa
    1. Amu S., Saunders S. P., Kronenberg M., Mangan N. E., Atzberger A., Fallon P. G. (2010). Regulatory B cells prevent and reverse allergic airway inflammation via FoxP3-positive T regulatory cells in a murine model. J. Allergy Clin. Immunol. 125, 1114–1124, e1118.10.1016/j.jaci.2010.01.018
    1. Anolik J. H., Barnard J., Cappione A., Pugh-Bernard A. E., Felgar R. E., Looney R. J., et al. (2004). Rituximab improves peripheral B cell abnormalities in human systemic lupus erythematosus. Arthritis Rheum. 50, 3580–359010.1002/art.20592
    1. Anolik J. H., Barnard J., Owen T., Zheng B., Kemshetti S., Looney R. J., et al. (2007). Delayed memory B cell recovery in peripheral blood and lymphoid tissue in systemic lupus erythematosus after B cell depletion therapy. Arthritis Rheum. 56, 3044–305610.1002/art.22810
    1. Anolik J. H., Looney R. J., Lund F. E., Randall T. D., Sanz I. (2009). Insights into the heterogeneity of human B cells: diverse functions, roles in autoimmunity, and use as therapeutic targets. Immunol. Res. 45, 144–15810.1007/s12026-009-8096-7
    1. Anolik J. H., Ravikumar R., Barnard J., Owen T., Almudevar A., Milner E. C., et al. (2008). Cutting edge: anti-tumor necrosis factor therapy in rheumatoid arthritis inhibits memory B lymphocytes via effects on lymphoid germinal centers and follicular dendritic cell networks. J. Immunol. 180, 688–692
    1. Arce S., Luger E., Muehlinghaus G., Cassese G., Hauser A., Horst A., et al. (2004). CD38 low IgG-secreting cells are precursors of various CD38 high-expressing plasma cell populations. J. Leukoc. Biol. 75, 1022–102810.1189/jlb.0603279
    1. Bendall S. C., Simonds E. F., Qiu P., Amir el A. D., Krutzik P. O., Finck R., et al. (2011). Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–69610.1126/science.1198704
    1. Bernasconi N. L., Traggiai E., Lanzavecchia A. (2002). Maintenance of serological memory by polyclonal activation of human memory B cells. Science 298, 2199–220210.1126/science.1076071
    1. Bertsias G. K., Salmon J. E., Boumpas D. T. (2010). Therapeutic opportunities in systemic lupus erythematosus: state of the art and prospects for the new decade. Ann. Rheum. Dis. 69, 1603–161110.1136/ard.2010.135186
    1. Bhat N. M., Lee L. M., van Vollenhoven R. F., Teng N. N., Bieber M. M. (2002). VH4-34 encoded antibody in systemic lupus erythematosus: effect of isotype. J. Rheumatol. 29, 2114–2121
    1. Blair P. A., Norena L. Y., Flores-Borja F., Rawlings D. J., Isenberg D. A., Ehrenstein M. R., et al. (2010). CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic lupus erythematosus patients. Immunity 32, 129–14010.1016/j.immuni.2009.11.009
    1. Blanchard-Rohner G., Pulickal A. S., Jol-van der Zijde C. M., Snape M. D., Pollard A. J. (2009). Appearance of peripheral blood plasma cells and memory B cells in a primary and secondary immune response in humans. Blood 114, 4998–500210.1182/blood-2009-03-211052
    1. Bleesing J. J., Fleisher T. A. (2003). Human B cells express a CD45 isoform that is similar to murine B220 and is downregulated with acquisition of the memory B-cell marker CD27. Cytometry B Clin. Cytom. 51, 1–810.1002/cyto.b.10007
    1. Blekherman G., Laubenbacher R., Cortes D. F., Mendes P., Torti F. M., Akman S., et al. (2011). Bioinformatics tools for cancer metabolomics. Metabolomics 7, 329–34310.1007/s11306-010-0270-3
    1. Blink E. J., Light A., Kallies A., Nutt S. L., Hodgkin P. D., Tarlinton D. M. (2005). Early appearance of germinal center-derived memory B cells and plasma cells in blood after primary immunization. J. Exp. Med. 201, 545–55410.1084/jem.20042060
    1. Bohnhorst J. O., Bjorgan M. B., Thoen J. E., Natvig J. B., Thompson K. M. (2001). Bm1-Bm5 classification of peripheral blood B cells reveals circulating germinal center founder cells in healthy individuals and disturbance in the B cell subpopulations in patients with primary Sjogren’s syndrome. J. Immunol. 167, 3610–3618
    1. Bouaziz J. D., Calbo S., Maho-Vaillant M., Saussine A., Bagot M., Bensussan A., et al. (2010). IL-10 produced by activated human B cells regulates CD4(+) T-cell activation in vitro. Eur. J. Immunol. 40, 2686–269110.1002/eji.201040673
    1. Cappione A., III, Anolik J. H., Pugh-Bernard A., Barnard J., Dutcher P., Silverman G., et al. (2005). Germinal center exclusion of autoreactive B cells is defective in human systemic lupus erythematosus. J. Clin. Invest. 115, 3205–321610.1172/JCI24179
    1. Cappione A. J., Pugh-Bernard A. E., Anolik J. H., Sanz I. (2004). Lupus IgG VH4.34 antibodies bind to a 220-kDa glycoform of CD45/B220 on the surface of human B lymphocytes. J. Immunol. 172, 4298–4307
    1. Caraux A., Klein B., Paiva B., Bret C., Schmitz A., Fuhler G. M., et al. (2010). Circulating human B and plasma cells. Age-associated changes in counts and detailed characterization of circulating normal CD138− and CD138+ plasma cells. Haematologica 95, 1016–102010.3324/haematol.2009.018689
    1. Chan O., Shlomchik M. J. (1998). A new role for B cells in systemic autoimmunity: B cells promote spontaneous T cell activation in MRL-lpr/lpr mice. J. Immunol. 160, 51–59
    1. Chang N. H., McKenzie T., Bonventi G., Landolt-Marticorena C., Fortin P. R., Gladman D., et al. (2008). Expanded population of activated antigen-engaged cells within the naive B cell compartment of patients with systemic lupus erythematosus. J. Immunol. 180, 1276–1284
    1. Chattopadhyay P. K., Roederer M. (2012). Cytometry: today’s technology and tomorrow’s horizons. Methods 57, 251–25810.1016/j.ymeth.2012.02.009
    1. Dall’Era M., Chakravarty E., Wallace D., Genovese M., Weisman M., Kavanaugh A., et al. (2007). Reduced B lymphocyte and immunoglobulin levels after atacicept treatment in patients with systemic lupus erythematosus: results of a multicenter, phase Ib, double-blind, placebo-controlled, dose-escalating trial. Arthritis Rheum. 56, 4142–415010.1002/art.23047
    1. Dass S., Bowman S. J., Vital E. M., Ikeda K., Pease C. T., Hamburger J., et al. (2008). Reduction of fatigue in Sjogren syndrome with rituximab: results of a randomised, double-blind, placebo-controlled pilot study. Ann. Rheum. Dis. 67, 1541–154410.1136/ard.2007.083865
    1. Davis M. M. (2008). A prescription for human immunology. Immunity 29, 835–83810.1016/j.immuni.2008.12.003
    1. Descatoire M., Weill J. C., Reynaud C. A., Weller S. (2011). A human equivalent of mouse B-1 cells? J. Exp. Med. 208, 2563–2564; author reply 2566–2569.10.1084/jem.20112232
    1. D’Haeseleer P. (2005). How does gene expression clustering work? Nat. Biotechnol. 23, 1499–150110.1038/nbt0805-941
    1. Di Niro R., Mesin L., Raki M., Zheng N. Y., Lund-Johansen F., Lundin K. E., et al. (2010). Rapid generation of rotavirus-specific human monoclonal antibodies from small-intestinal mucosa. J. Immunol. 185, 5377–538310.4049/jimmunol.1001587
    1. Diaz-Romero J., Romeo S., Bovee J. V., Hogendoorn P. C., Heini P. F., Mainil-Varlet P. (2010). Hierarchical clustering of flow cytometry data for the study of conventional central chondrosarcoma. J. Cell. Physiol. 225, 601–61110.1002/jcp.22245
    1. Diehl A. D., Augustine A. D., Blake J. A., Cowell L. G., Gold E. S., Gondre-Lewis T. A., et al. (2011). Hematopoietic cell types: prototype for a revised cell ontology. J. Biomed. Inform. 44, 75–7910.1016/j.jbi.2010.01.006
    1. Dogan I., Bertocci B., Vilmont V., Delbos F., Megret J., Storck S., et al. (2009). Multiple layers of B cell memory with different effector functions. Nat. Immunol. 10, 1292–129910.1038/ni.1814
    1. Doria-Rose N. A., Klein R. M., Manion M. M., O’Dell S., Phogat A., Chakrabarti B., et al. (2009). Frequency and phenotype of human immunodeficiency virus envelope-specific B cells from patients with broadly cross-neutralizing antibodies. J. Virol. 83, 188–19910.1128/JVI.01583-08
    1. Duddy M., Niino M., Adatia F., Hebert S., Freedman M., Atkins H., et al. (2007). Distinct effector cytokine profiles of memory and naive human B cell subsets and implication in multiple sclerosis. J. Immunol. 178, 6092–6099
    1. Dunn-Walters D. K., Isaacson P. G., Spencer J. (1995). Analysis of mutations in immunoglobulin heavy chain variable region genes of microdissected marginal zone (MGZ) B cells suggests that the MGZ of human spleen is a reservoir of memory B cells. J. Exp. Med. 182, 559–56610.1084/jem.182.2.559
    1. Fairfax K. A., Kallies A., Nutt S. L., Tarlinton D. M. (2008). Plasma cell development: from B-cell subsets to long-term survival niches. Semin. Immunol. 20, 49–5810.1016/j.smim.2007.12.002
    1. Fecteau J. F., Cote G., Neron S. (2006). A new memory CD27-IgG+ B cell population in peripheral blood expressing VH genes with low frequency of somatic mutation. J. Immunol. 177, 3728–3736
    1. Fillatreau S., Sweenie C. H., McGeachy M. J., Gray D., Anderton S. M. (2002). B cells regulate autoimmunity by provision of IL-10. Nat. Immunol. 3, 944–95010.1038/ni833
    1. Frasca D., Diaz A., Romero M., Landin A. M., Phillips M., Lechner S. C., et al. (2010). Intrinsic defects in B cell response to seasonal influenza vaccination in elderly humans. Vaccine 28, 8077–808410.1016/j.vaccine.2010.10.023
    1. Frasca D., Diaz A., Romero M., Phillips M., Mendez N. V., Landin A. M., et al. (2012). Unique biomarkers for B-cell function predict the serum response to pandemic H1N1 influenza vaccine. Int. Immunol. 24, 175–18210.1093/intimm/dxr123
    1. Gonzalez-Garcia I., Ocana E., Jimenez-Gomez G., Campos-Caro A., Brieva J. A. (2006). Immunization-induced perturbation of human blood plasma cell pool: progressive maturation, IL-6 responsiveness, and high PRDI-BF1/BLIMP1 expression are critical distinctions between antigen-specific and nonspecific plasma cells. J. Immunol. 176, 4042–4050
    1. Good K. L., Avery D. T., Tangye S. G. (2009). Resting human memory B cells are intrinsically programmed for enhanced survival and responsiveness to diverse stimuli compared to naive B cells. J. Immunol. 182, 890–901
    1. Gordon J. N., Pickard K. M., Di Sabatino A., Prothero J. D., Pender S. L., Goggin P. M., et al. (2008). Matrix metalloproteinase-3 production by gut IgG plasma cells in chronic inflammatory bowel disease. Inflamm. Bowel Dis. 14, 195–20310.1002/ibd.20302
    1. Griffin D. O., Holodick N. E., Rothstein T. L. (2011). Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+CD27+CD43+CD70−. J. Exp. Med. 208, 67–8010.1084/jem.20110978
    1. Habib L. K., Finn W. G. (2006). Unsupervised immunophenotypic profiling of chronic lymphocytic leukemia. Cytometry B Clin. Cytom. 70, 124–135
    1. Halliley J. L., Kyu S., Kobie J. J., Walsh E. E., Falsey A. R., Randall T. D., et al. (2010). Peak frequencies of circulating human influenza-specific antibody secreting cells correlate with serum antibody response after immunization. Vaccine 28, 3582–358710.1016/j.vaccine.2010.02.088
    1. Hansen A., Odendahl M., Reiter K., Jacobi A. M., Feist E., Scholze J., et al. (2002). Diminished peripheral blood memory B cells and accumulation of memory B cells in the salivary glands of patients with Sjogren’s syndrome. Arthritis Rheum. 46, 2160–217110.1002/art.10445
    1. Harris P. A., Taylor R., Thielke R., Payne J., Gonzalez N., Conde J. G. (2009). Research electronic data capture (REDCap) – a metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 42, 377–38110.1016/j.jbi.2008.08.010
    1. Harwood N. E., Batista F. D. (2010). Early events in B cell activation. Annu. Rev. Immunol. 28, 185–21010.1146/annurev-immunol-030409-101216
    1. Hauser S. L., Waubant E., Arnold D. L., Vollmer T., Antel J., Fox R. J., et al. (2008). B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N. Engl. J. Med. 358, 676–68810.1056/NEJMoa0706383
    1. Herzenberg L. A., Tung J., Moore W. A., Parks D. R. (2006). Interpreting flow cytometry data: a guide for the perplexed. Nat. Immunol. 7, 681–68510.1038/nrg1924
    1. Houtkamp M. A., de Boer O. J., van der Loos C. M., van der Wal A. C., Becker A. E. (2001). Adventitial infiltrates associated with advanced atherosclerotic plaques: structural organization suggests generation of local humoral immune responses. J. Pathol. 193, 263–26910.1002/1096-9896(2000)9999:9999<::AID-PATH774>;2-N
    1. Huang W., Sinha J., Newman J., Reddy B., Budhai L., Furie R., et al. (2002). The effect of anti-CD40 ligand antibody on B cells in human systemic lupus erythematosus. Arthritis Rheum. 46, 1554–156210.1002/art.10273
    1. Isenberg D., Spellerberg M., Williams W., Griffiths M., Stevenson F. (1993). Identification of the 9G4 idiotope in systemic lupus erythematosus. Br. J. Rheumatol. 32, 876–88210.1093/rheumatology/32.4.349
    1. Iwata S., Saito K., Tokunaga M., Yamaoka K., Nawata M., Yukawa S., et al. (2011a). Phenotypic changes of lymphocytes in patients with systemic lupus erythematosus who are in longterm remission after B cell depletion therapy with rituximab. J. Rheumatol. 38, 633–64110.3899/jrheum.100729
    1. Iwata Y., Matsushita T., Horikawa M., Dilillo D. J., Yanaba K., Venturi G. M., et al. (2011b). Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood 117, 530–54110.1182/blood-2010-07-294249
    1. Jacob A., Weinshenker B. G., Violich I., McLinskey N., Krupp L., Fox R. J., et al. (2008). Treatment of neuromyelitis optica with rituximab: retrospective analysis of 25 patients. Arch. Neurol. 65, 1443–144810.1001/archneur.65.11.noc80069
    1. Jacobi A. M., Huang W., Wang T., Freimuth W., Sanz I., Furie R., et al. (2010a). Effect of long-term belimumab treatment on B cells in systemic lupus erythematosus: extension of a phase II, double-blind, placebo-controlled, dose-ranging study. Arthritis Rheum. 62, 201–21010.1002/art.27189
    1. Jacobi A. M., Mei H., Hoyer B. F., Mumtaz I. M., Thiele K., Radbruch A., et al. (2010b). HLA-DRhigh/CD27high plasmablasts indicate active disease in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 69, 305–30810.1136/ard.2008.096495
    1. Jacobi A. M., Reiter K., Mackay M., Aranow C., Hiepe F., Radbruch A., et al. (2008). Activated memory B cell subsets correlate with disease activity in systemic lupus erythematosus: delineation by expression of CD27, IgD, and CD95. Arthritis Rheum. 58, 1762–177310.1002/art.23498
    1. Jahrsdorfer B., Blackwell S. E., Wooldridge J. E., Huang J., Andreski M. W., Jacobus L. S., et al. (2006). B-chronic lymphocytic leukemia cells and other B cells can produce granzyme B and gain cytotoxic potential after interleukin-21-based activation. Blood 108, 2712–271910.1182/blood-2006-03-014001
    1. Jefferson E., Liscinsky M. (2011). FDA Approves Benlysta to Treat Lupus. Available at: [online FDA news release].
    1. Jenks S. A., Sanz I. (2009). Altered B cell receptor signaling in human systemic lupus erythematosus. Autoimmun. Rev. 8, 209–21310.1016/j.autrev.2008.07.047
    1. Kaminski D. A., Sanz I. (2013). “Regulatory B cells,” in Encyclopedia of Medical Immunology, eds Mackay I. R., Rose N. R. (New York: Springer; ) (in press).
    1. Kaminski D. A., Wei C., Rosenberg A. F., Lee F. E., Sanz I. (2012). Multiparameter flow cytometry and bioanalytics for B cell profiling in systemic lupus erythematosus. Methods Mol. Biol. 900, 109–134
    1. Kantele J. M., Kantele A., Arvilommi H. (1996). Circulating immunoglobulin-secreting cells are heterogeneous in their expression of maturation markers and homing receptors. Clin. Exp. Immunol. 104, 525–53010.1046/j.1365-2249.1996.47751.x
    1. Kikutani H., Suemura M., Owaki H., Nakamura H., Sato R., Yamasaki K., et al. (1986). Fc epsilon receptor, a specific differentiation marker transiently expressed on mature B cells before isotype switching. J. Exp. Med. 164, 1455–146910.1084/jem.164.5.1455
    1. Klein U., Rajewsky K., Kuppers R. (1998). Human immunoglobulin (Ig)M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J. Exp. Med. 188, 1679–168910.1084/jem.188.9.1679
    1. Kobie J. J., Alcena D. C., Zheng B., Bryk P., Mattiacio J. L., Brewer M., et al. (2012). 9G4 Autoreactivity is increased in HIV-infected patients and correlates with HIV broadly neutralizing serum activity. PLoS ONE 7, e35356.10.1371/journal.pone.0035356
    1. Kolar G. R., Mehta D., Pelayo R., Capra J. D. (2007). A novel human B cell subpopulation representing the initial germinal center population to express AID. Blood 109, 2545–255210.1182/blood-2006-07-037150
    1. Kong Y. M., Dahlke C., Xiang Q., Qian Y., Karp D., Scheuermann R. H. (2011). Toward an ontology-based framework for clinical research databases. J. Biomed. Inform. 44, 48–5810.1016/j.jbi.2011.08.019
    1. Korganow A. S., Knapp A. M., Nehme-Schuster H., Soulas-Sprauel P., Poindron V., Pasquali J. L., et al. (2010). Peripheral B cell abnormalities in patients with systemic lupus erythematosus in quiescent phase: decreased memory B cells and membrane CD19 expression. J. Autoimmun. 34, 426–43410.1016/j.jaut.2009.11.002
    1. Kotecha N., Krutzik P. O., Irish J. M. (2010). Web-based analysis and publication of flow cytometry experiments. Curr. Protoc. Cytom. Chapter 10, Unit10 17.10.1002/0471142956.cy1017s53
    1. Kruetzmann S., Rosado M. M., Weber H., Germing U., Tournilhac O., Peter H. H., et al. (2003). Human immunoglobulin M memory B cells controlling Streptococcus pneumoniae infections are generated in the spleen. J. Exp. Med. 197, 939–94510.1084/jem.20022020
    1. Kumagai S., Ishida H., Iwai K., Tsubata T., Umehara H., Ozaki S., et al. (1989). Possible different mechanisms of B cell activation in systemic lupus erythematosus and rheumatoid arthritis: opposite expression of low-affinity receptors for IgE (CD23) on their peripheral B cells. Clin. Exp. Immunol. 78, 348–353
    1. Kurosaki T. (2011). Regulation of BCR signaling. Mol. Immunol. 48, 1287–129110.1016/j.molimm.2010.12.007
    1. Kyaw T., Tay C., Khan A., Dumouchel V., Cao A., To K., et al. (2010). Conventional B2 B cell depletion ameliorates whereas its adoptive transfer aggravates atherosclerosis. J. Immunol. 185, 4410–441910.4049/jimmunol.1000033
    1. Kyu S. Y., Kobie J., Yang H., Zand M. S., Topham D. J., Quataert S. A., et al. (2009). Frequencies of human influenza-specific antibody secreting cells or plasmablasts post vaccination from fresh and frozen peripheral blood mononuclear cells. J. Immunol. Methods 340, 42–4710.1016/j.jim.2008.09.025
    1. Lakew M., Nordstrom I., Czerkinsky C., Quiding-Jarbrink M. (1997). Combined immunomagnetic cell sorting and ELISPOT assay for the phenotypic characterization of specific antibody-forming cells. J. Immunol. Methods 203, 193–19810.1016/S0022-1759(97)00030-6
    1. Leandro M. J., Cambridge G., Ehrenstein M. R., Edwards J. C. (2006). Reconstitution of peripheral blood B cells after depletion with rituximab in patients with rheumatoid arthritis. Arthritis Rheum. 54, 613–62010.1002/art.22066
    1. Lee F. E., Falsey A. R., Halliley J. L., Sanz I., Walsh E. E. (2010). Circulating antibody-secreting cells during acute respiratory syncytial virus infection in adults. J. Infect. Dis. 202, 1659–166610.1086/656480
    1. Lee F. E., Halliley J. L., Walsh E. E., Moscatiello A. P., Kmush B. L., Falsey A. R., et al. (2011). Circulating human antibody-secreting cells during vaccinations and respiratory viral infections are characterized by high specificity and lack of bystander effect. J. Immunol. 186, 5514–552110.4049/jimmunol.1002184
    1. Lee J. A., Spidlen J., Boyce K., Cai J., Crosbie N., Dalphin M., et al. (2008). MIFlowCyt: the minimum information about a flow cytometry experiment. Cytometry A 73, 926–930
    1. Li G. M., Chiu C., Wrammert J., McCausland M., Andrews S. F., Zheng N. Y., et al. (2012). Pandemic H1N1 influenza vaccine induces a recall response in humans that favors broadly cross-reactive memory B cells. Proc. Natl. Acad. Sci. U.S.A. 109, 9047–905210.1073/pnas.1118282109
    1. Liossis S. N., Kovacs B., Dennis G., Kammer G. M., Tsokos G. C. (1996). B cells from patients with systemic lupus erythematosus display abnormal antigen receptor-mediated early signal transduction events. J. Clin. Invest. 98, 2549–255710.1172/JCI119073
    1. Lugli E., Pinti M., Nasi M., Troiano L., Ferraresi R., Mussi C., et al. (2007). Subject classification obtained by cluster analysis and principal component analysis applied to flow cytometric data. Cytometry A 71, 334–344
    1. Lund F. E., Randall T. D. (2010). Effector and regulatory B cells: modulators of CD4(+) T cell immunity. Nat. Rev. Immunol. 10, 236–24710.1038/nri2729
    1. Macallan D. C., Wallace D. L., Zhang Y., Ghattas H., Asquith B., de Lara C., et al. (2005). B-cell kinetics in humans: rapid turnover of peripheral blood memory cells. Blood 105, 3633–364010.1182/blood-2004-09-3740
    1. Maecker H. T., McCoy J. P., Jr., Amos M., Elliott J., Gaigalas A., Wang L., et al. (2010). A model for harmonizing flow cytometry in clinical trials. Nat. Immunol. 11, 975–97810.1038/ni1110-975
    1. Maecker H. T., McCoy J. P., Nussenblatt R. (2012). Standardizing immunophenotyping for the Human Immunology Project. Nat. Rev. Immunol. 12, 191–20010.1038/nri3158-c2
    1. Mamani-Matsuda M., Cosma A., Weller S., Faili A., Staib C., Garcon L., et al. (2008). The human spleen is a major reservoir for long-lived vaccinia virus-specific memory B cells. Blood 111, 4653–465910.1182/blood-2007-11-123844
    1. Marcus C., Dhillon G., Anolik J. H. (2011). B cell immunology for the clinician. Pediatr. Infect. Dis. J. 30, 158–16010.1097/INF.0b013e318207447f
    1. Maseda D., Smith S. H., DiLillo D. J., Bryant J. M., Candando K. M., Weaver C. T., et al. (2012). Regulatory B10 cells differentiate into antibody-secreting cells after transient IL-10 production in vivo. J. Immunol. 188, 1036–104810.4049/jimmunol.1102500
    1. Mauri C., Bosma A. (2012). Immune regulatory function of B cells. Annu. Rev. Immunol. 30, 221–24110.1146/annurev-immunol-020711-074934
    1. McMillan R., Longmire R. L., Yelenosky R., Lang J. E., Heath V., Craddock C. G. (1972). Immunoglobulin synthesis by human lymphoid tissues: normal bone marrow as a major site of IgG production. J. Immunol. 109, 1386–1394
    1. Medina F., Segundo C., Campos-Caro A., Gonzalez-Garcia I., Brieva J. A. (2002). The heterogeneity shown by human plasma cells from tonsil, blood, and bone marrow reveals graded stages of increasing maturity, but local profiles of adhesion molecule expression. Blood 99, 2154–216110.1182/blood.V99.6.2154
    1. Meijer J. M., Meiners P. M., Vissink A., Spijkervet F. K., Abdulahad W., Kamminga N., et al. (2010). Effectiveness of rituximab treatment in primary Sjogren’s syndrome: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 62, 960–96810.1002/acr.20153
    1. Misra J., Schmitt W., Hwang D., Hsiao L. L., Gullans S., Stephanopoulos G. (2002). Interactive exploration of microarray gene expression patterns in a reduced dimensional space. Genome Res. 12, 1112–112010.1101/gr.225302
    1. Mizoguchi A., Mizoguchi E., Takedatsu H., Blumberg R. S., Bhan A. K. (2002). Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity 16, 219–23010.1016/S1074-7613(02)00274-1
    1. Moir S., Malaspina A., Ho J., Wang W., Dipoto A. C., O’Shea M. A., et al. (2008). Normalization of B cell counts and subpopulations after antiretroviral therapy in chronic HIV disease. J. Infect. Dis. 197, 572–57910.1086/526789
    1. Moller B., Aeberli D., Eggli S., Fuhrer M., Vajtai I., Vogelin E., et al. (2009). Class-switched B cells display response to therapeutic B-cell depletion in rheumatoid arthritis. Arthritis Res. Ther. 11, R62.10.1186/ar2686
    1. Morell A., Terry W. D., Waldmann T. A. (1970). Metabolic properties of IgG subclasses in man. J. Clin. Invest. 49, 673–68010.1172/JCI106279
    1. Morrow M., Valentin A., Little R., Yarchoan R., Pavlakis G. N. (2008). A splenic marginal zone-like peripheral blood CD27 + B220− B cell population is preferentially depleted in HIV type 1-infected individuals. AIDS Res. Hum. Retroviruses 24, 621–63310.1089/aid.2007.0186
    1. Naim I., Datta S., Sharma G., Cavenaugh J. S., Mosmann T. R. (2010). “SWIFT: scalable weighted iterative sampling for flow cytometry clustering,” in Proceedings – ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing Acoust Speech Signal Process, Dallas, 509–512
    1. Nakou M., Katsikas G., Sidiropoulos P., Bertsias G., Papadimitraki E., Raptopoulou A., et al. (2009). Rituximab therapy reduces activated B cells in both the peripheral blood and bone marrow of patients with rheumatoid arthritis: depletion of memory B cells correlates with clinical response. Arthritis Res. Ther. 11, R131.10.1186/ar2837
    1. Newell K. A., Asare A., Kirk A. D., Gisler T. D., Bourcier K., Suthanthiran M., et al. (2010). Identification of a B cell signature associated with renal transplant tolerance in humans. J. Clin. Invest. 120, 1836–184710.1172/JCI39933
    1. Odendahl M., Jacobi A., Hansen A., Feist E., Hiepe F., Burmester G. R., et al. (2000). Disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus. J. Immunol. 165, 5970–5979
    1. Odendahl M., Mei H., Hoyer B. F., Jacobi A. M., Hansen A., Muehlinghaus G., et al. (2005). Generation of migratory antigen-specific plasma blasts and mobilization of resident plasma cells in a secondary immune response. Blood 105, 1614–162110.1182/blood-2004-07-2507
    1. Oracki S. A., Walker J. A., Hibbs M. L., Corcoran L. M., Tarlinton D. M. (2010). Plasma cell development and survival. Immunol. Rev. 237, 140–15910.1111/j.1600-065X.2010.00940.x
    1. Palanichamy A., Barnard J., Zheng B., Owen T., Quach T., Wei C., et al. (2009). Novel human transitional B cell populations revealed by B cell depletion therapy. J. Immunol. 182, 5982–599310.4049/jimmunol.0801859
    1. Pape K. A., Taylor J. J., Maul R. W., Gearhart P. J., Jenkins M. K. (2011). Different B cell populations mediate early and late memory during an endogenous immune response. Science 331, 1203–120710.1126/science.1201730
    1. Pascual V., Liu Y. J., Magalski A., de Bouteiller O., Banchereau J., Capra J. D. (1994). Analysis of somatic mutation in five B cell subsets of human tonsil. J. Exp. Med. 180, 329–33910.1084/jem.180.1.329
    1. Pelton B. K., Speckmaier M., Hylton W., Farrant J., Denman A. M. (1991). Cytokine-independent progression of immunoglobulin production in vitro by B lymphocytes from patients with systemic lupus erythematosus. Clin. Exp. Immunol. 83, 274–27910.1111/j.1365-2249.1991.tb05627.x
    1. Perez-Andres M., Grosserichter-Wagener C., Teodosio C., van Dongen J. J., Orfao A., van Zelm M. C. (2011). The nature of circulating CD27+CD43+ B cells. J. Exp. Med. 208, 2565–2566; author reply 2566–2569.10.1084/jem.20112203
    1. Perfetto S. P., Ambrozak D., Nguyen R., Chattopadhyay P., Roederer M. (2006). Quality assurance for polychromatic flow cytometry. Nat. Protoc. 1, 1522–153010.1038/nprot.2006.250
    1. Perry D. K., Pollinger H. S., Burns J. M., Rea D., Ramos E., Platt J. L., et al. (2008). Two novel assays of alloantibody-secreting cells demonstrating resistance to desensitization with IVIG and rATG. Am. J. Transplant. 8, 133–14310.1111/j.1600-6143.2007.02039.x
    1. Pescovitz M. D., Greenbaum C. J., Krause-Steinrauf H., Becker D. J., Gitelman S. E., Goland R., et al. (2009). Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N. Engl. J. Med. 361, 2143–215210.1056/NEJMoa0904452
    1. Pranzatelli M. R., Tate E. D., Travelstead A. L., Barbosa J., Bergamini R. A., Civitello L., et al. (2006). Rituximab (anti-CD20) adjunctive therapy for opsoclonus-myoclonus syndrome. J. Pediatr. Hematol. Oncol. 28, 585–59310.1097/01.mph.0000212991.64435.f0
    1. Pugh-Bernard A. E., Silverman G. J., Cappione A. J., Villano M. E., Ryan D. H., Insel R. A., et al. (2001). Regulation of inherently autoreactive VH4-34 B cells in the maintenance of human B cell tolerance. J. Clin. Invest. 108, 1061–107010.1172/JCI12462
    1. Qian Y., Wei C., Eun-Hyung Lee F., Campbell J., Halliley J., Lee J. A., et al. (2010). Elucidation of seventeen human peripheral blood B-cell subsets and quantification of the tetanus response using a density-based method for the automated identification of cell populations in multidimensional flow cytometry data. Cytometry B Clin. Cytom. 78(Suppl. 1), S69–S82
    1. Qiu P., Simonds E. F., Bendall S. C., Gibbs K. D., Jr., Bruggner R. V., Linderman M. D., et al. (2011). Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat. Biotechnol. 29, 886–89110.1038/nbt.1991
    1. Quach T. D., Manjarrez-Orduno N., Adlowitz D. G., Silver L., Yang H., Wei C., et al. (2011). Anergic responses characterize a large fraction of human autoreactive naive B cells expressing low levels of surface IgM. J. Immunol. 186, 4640–464810.4049/jimmunol.1001946
    1. Quackenbush J. (2001). Computational analysis of microarray data. Nat. Rev. Genet. 2, 418–42710.1038/35076576
    1. Ramgolam V. S., Sha Y., Marcus K. L., Choudhary N., Troiani L., Chopra M., et al. (2011). B cells as a therapeutic target for IFN-beta in relapsing-remitting multiple sclerosis. J. Immunol. 186, 4518–452610.4049/jimmunol.1000271
    1. Redfield R. R., III, Rodriguez E., Parsons R., Vivek K., Mustafa M. M., Noorchashm H., et al. (2011). Essential role for B cells in transplantation tolerance. Curr. Opin. Immunol. 23, 685–69110.1016/j.coi.2011.07.011
    1. Rodriguez-Bayona B., Ramos-Amaya A., Perez-Venegas J. J., Rodriguez C., Brieva J. A. (2010). Decreased frequency and activated phenotype of blood CD27 IgD IgM B lymphocytes is a permanent abnormality in systemic lupus erythematosus patients. Arthritis Res. Ther. 12, R108.10.1186/ar3042
    1. Roederer M., Tarnok A. (2010). OMIPs – orchestrating multiplexity in polychromatic science. Cytometry A 77, 811–812
    1. Roll P., Dorner T., Tony H. P. (2008). Anti-CD20 therapy in patients with rheumatoid arthritis: predictors of response and B cell subset regeneration after repeated treatment. Arthritis Rheum. 58, 1566–157510.1002/art.23473
    1. Sanz I. (2011). Connective tissue diseases: targeting B cells in SLE: good news at last! Nat. Rev. Rheumatol. 7, 255–25610.1038/nrrheum.2011.48
    1. Sanz I., Lee F. E. (2010). B cells as therapeutic targets in SLE. Nat. Rev. Rheumatol. 6, 326–33710.1038/nrrheum.2010.68
    1. Sanz I., Wei C., Lee F. E., Anolik J. (2008). Phenotypic and functional heterogeneity of human memory B cells. Semin. Immunol. 20, 67–8210.1016/j.smim.2007.12.006
    1. Seifert M., Kuppers R. (2009). Molecular footprints of a germinal center derivation of human IgM+(IgD+)CD27+ B cells and the dynamics of memory B cell generation. J. Exp. Med. 206, 2659–266910.1084/jem.20091087
    1. Sim I., Carini S., Tu S., Wynden R., Pollock B. H., Mollah S. A., et al. (2010). The human studies database project: federating human studies design data using the ontology of clinical research. AMIA Summits Transl. Sci. Proc. 2010, 51–55
    1. Sjoberg B. G., Su J., Dahlbom I., Gronlund H., Wikstrom M., Hedblad B., et al. (2009). Low levels of IgM antibodies against phosphorylcholine-A potential risk marker for ischemic stroke in men. Atherosclerosis 203, 528–53210.1016/j.atherosclerosis.2008.07.009
    1. Slifka M. K., Antia R., Whitmire J. K., Ahmed R. (1998). Humoral immunity due to long-lived plasma cells. Immunity 8, 363–37210.1016/S1074-7613(00)80541-5
    1. Smith B., Scheuermann R. H. (2011). Ontologies for clinical and translational research: introduction. J. Biomed. Inform. 44, 3–710.1016/j.jbi.2011.01.002
    1. Smith K. G., Hewitson T. D., Nossal G. J., Tarlinton D. M. (1996). The phenotype and fate of the antibody-forming cells of the splenic foci. Eur. J. Immunol. 26, 444–44810.1002/eji.1830260226
    1. Spidlen J., Leif R. C., Moore W., Roederer M., Brinkman R. R. (2008). Gating-ML: XML-based gating descriptions in flow cytometry. Cytometry A 73A, 1151–115710.1002/cyto.a.20637
    1. Steinfeld S. D., Tant L., Burmester G. R., Teoh N. K., Wegener W. A., Goldenberg D. M., et al. (2006). Epratuzumab (humanised anti-CD22 antibody) in primary Sjogren’s syndrome: an open-label phase I/II study. Arthritis Res. Ther. 8, R129.10.1186/ar2018
    1. Tadmor T., Zhang Y., Cho H. M., Podack E. R., Rosenblatt J. D. (2011). The absence of B lymphocytes reduces the number and function of T-regulatory cells and enhances the anti-tumor response in a murine tumor model. Cancer Immunol. Immunother. 60, 609–61910.1007/s00262-011-0972-z
    1. Tak P. P., Thurlings R. M., Rossier C., Nestorov I., Dimic A., Mircetic V., et al. (2008). Atacicept in patients with rheumatoid arthritis: results of a multicenter, phase Ib, double-blind, placebo-controlled, dose-escalating, single- and repeated-dose study. Arthritis Rheum. 58, 61–7210.1002/art.23178
    1. Tangye S. G., Avery D. T., Deenick E. K., Hodgkin P. D. (2003a). Intrinsic differences in the proliferation of naive and memory human B cells as a mechanism for enhanced secondary immune responses. J. Immunol. 170, 686–694
    1. Tangye S. G., Avery D. T., Hodgkin P. D. (2003b). A division-linked mechanism for the rapid generation of Ig-secreting cells from human memory B cells. J. Immunol. 170, 261–269
    1. Tangye S. G., Liu Y. J., Aversa G., Phillips J. H., de Vries J. E. (1998). Identification of functional human splenic memory B cells by expression of CD148 and CD27. J. Exp. Med. 188, 1691–170310.1084/jem.188.9.1691
    1. Terstappen L. W., Johnsen S., Segers-Nolten I. M., Loken M. R. (1990). Identification and characterization of plasma cells in normal human bone marrow by high-resolution flow cytometry. Blood 76, 1739–1747
    1. Tiller T., Tsuiji M., Yurasov S., Velinzon K., Nussenzweig M. C., Wardemann H. (2007). Autoreactivity in human IgG+ memory B cells. Immunity 26, 205–21310.1016/j.immuni.2007.01.009
    1. To C. H., Mok C. C., Tang S. S., Ying S. K., Wong R. W., Lau C. S. (2009). Prognostically distinct clinical patterns of systemic lupus erythematosus identified by cluster analysis. Lupus 18, 1267–127510.1177/0961203309345767
    1. Tsuiji M., Yurasov S., Velinzon K., Thomas S., Nussenzweig M. C., Wardemann H. (2006). A checkpoint for autoreactivity in human IgM+ memory B cell development. J. Exp. Med. 203, 393–40010.1084/jem.20052033
    1. van Vollenhoven R. F., Bieber M. M., Powell M. J., Gupta P. K., Bhat N. M., Richards K. L., et al. (1999). VH4-34 encoded antibodies in systemic lupus erythematosus: a specific diagnostic marker that correlates with clinical disease characteristics. J. Rheumatol. 26, 1727–1733
    1. Wallace D. J., Stohl W., Furie R. A., Lisse J. R., McKay J. D., Merrill J. T., et al. (2009). A phase II, randomized, double-blind, placebo-controlled, dose-ranging study of belimumab in patients with active systemic lupus erythematosus. Arthritis Rheum. 61, 1168–117810.1002/art.24699
    1. Wasserstrom H., Bussel J., Lim L. C., Cunningham-Rundles C. (2008). Memory B cells and pneumococcal antibody after splenectomy. J. Immunol. 181, 3684–3689
    1. Wehr C., Eibel H., Masilamani M., Illges H., Schlesier M., Peter H. H., et al. (2004). A new CD21low B cell population in the peripheral blood of patients with SLE. Clin. Immunol. 113, 161–17110.1016/j.clim.2004.05.010
    1. Wei C., Anolik J., Cappione A., Zheng B., Pugh-Bernard A., Brooks J., et al. (2007). A new population of cells lacking expression of CD27 represents a notable component of the B cell memory compartment in systemic lupus erythematosus. J. Immunol. 178, 6624–6633
    1. Wei C., Jung J., Sanz I. (2011). OMIP-003: phenotypic analysis of human memory B cells. Cytometry A 79, 894–896
    1. Weller S., Braun M. C., Tan B. K., Rosenwald A., Cordier C., Conley M. E., et al. (2004). Human blood IgM “memory” B cells are circulating splenic marginal zone B cells harboring a prediversified immunoglobulin repertoire. Blood 104, 3647–365410.1182/blood-2004-01-0346
    1. Weller S., Faili A., Garcia C., Braun M. C., Le Deist F. F., de Saint Basile G. G., et al. (2001). CD40-CD40L independent Ig gene hypermutation suggests a second B cell diversification pathway in humans. Proc. Natl. Acad. Sci. U.S.A. 98, 1166–117010.1073/pnas.98.3.1166
    1. Weller S., Mamani-Matsuda M., Picard C., Cordier C., Lecoeuche D., Gauthier F., et al. (2008). Somatic diversification in the absence of antigen-driven responses is the hallmark of the IgM+IgD+CD27+ B cell repertoire in infants. J. Exp. Med. 205, 1331–134210.1084/jem.20071555
    1. Wirths S., Lanzavecchia A. (2005). ABCB1 transporter discriminates human resting naive B cells from cycling transitional and memory B cells. Eur. J. Immunol. 35, 3433–344110.1002/eji.200535364
    1. Wolf S. D., Dittel B. N., Hardardottir F., Janeway C. A., Jr. (1996). Experimental autoimmune encephalomyelitis induction in genetically B cell-deficient mice. J. Exp. Med. 184, 2271–227810.1084/jem.184.6.2271
    1. Wrammert J., Koutsonanos D., Li G. M., Edupuganti S., Sui J., Morrissey M., et al. (2011). Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. J. Exp. Med. 208, 181–19310.1084/jem.20101352
    1. Wrammert J., Smith K., Miller J., Langley W. A., Kokko K., Larsen C., et al. (2008). Rapid cloning of high-affinity human monoclonal antibodies against influenza virus. Nature 453, 667–67110.1038/nature06890
    1. Wu Y. C., Kipling D., Dunn-Walters D. K. (2011). The relationship between CD27 negative and positive B cell populations in human peripheral blood. Front. Immunol. 2:81.10.3389/fimmu.2011.00081
    1. Wu Y. C., Kipling D., Leong H. S., Martin V., Ademokun A. A., Dunn-Walters D. K. (2010). High-throughput immunoglobulin repertoire analysis distinguishes between human IgM memory and switched memory B-cell populations. Blood 116, 1070–107810.1182/blood-2009-11-256016
    1. Yanaba K., Bouaziz J. D., Matsushita T., Tsubata T., Tedder T. F. (2009). The development and function of regulatory B cells expressing IL-10 (B10 cells) requires antigen receptor diversity and TLR signals. J. Immunol. 182, 7459–747210.4049/jimmunol.0900270
    1. Zhou X., Hansson G. K. (1999). Detection of B cells and proinflammatory cytokines in atherosclerotic plaques of hypercholesterolaemic apolipoprotein E knockout mice. Scand. J. Immunol. 50, 25–3010.1046/j.1365-3083.1999.00559.x

Source: PubMed

3
Subscribe