Nutritional Composition and Bioactive Content of Legumes: Characterization of Pulses Frequently Consumed in France and Effect of the Cooking Method

Marielle Margier, Stéphane Georgé, Noureddine Hafnaoui, Didier Remond, Marion Nowicki, Laure Du Chaffaut, Marie-Josèphe Amiot, Emmanuelle Reboul, Marielle Margier, Stéphane Georgé, Noureddine Hafnaoui, Didier Remond, Marion Nowicki, Laure Du Chaffaut, Marie-Josèphe Amiot, Emmanuelle Reboul

Abstract

Pulses display nutritional benefits and are recommended in sustainable diets. Indeed, they are rich in proteins and fibers, and can contain variable amounts of micronutrients. However, pulses also contain bioactive compounds such as phytates, saponins, or polyphenols/tannins that can exhibit ambivalent nutritional properties depending on their amount in the diet. We characterized the nutritional composition and bioactive compound content of five types of prepared pulses frequently consumed in France (kidney beans, white beans, chickpeas, brown and green lentils, flageolets), and specifically compared the effects of household cooking vs. canning on the composition of pulses that can be consumed one way or the other. The contents in macro-, micronutrients, and bioactive compounds highly varied from one pulse to another (i.e., 6.9 to 9.7 g/100 g of cooked product for proteins, 4.6 to 818.9 µg/100 g for lutein or 15.0 to 284.3 mg/100 g for polyphenols). The preparation method was a key factor governing pulse final nutritional composition in hydrophilic compounds, depending on pulse species. Canning led to a greater decrease in proteins, total dietary fibers, magnesium or phytate contents compared to household cooking (i.e., -30%, -44%, -33% and -38%, p < 0.05, respectively, in kidney beans). As canned pulses are easy to use for consumers, additional research is needed to improve their transformation process to further optimize their nutritional quality.

Keywords: carotenoids; essential amino acids; fibers; lipids; minerals; phytates; proteins; saponins; tannins; vitamins.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Chaudhary A., Marinangeli C.P.F., Tremorin D., Mathys A. Nutritional combined greenhouse gas life cycle analysis for incorporating canadian yellow pea into cereal-based food products. Nutrients. 2018;10 doi: 10.3390/nu10040490.
    1. Gan Y., Hamel C., O’Donovan J.T., Cutforth H., Zentner R.P., Campbell C.A., Niu Y., Poppy L. Diversifying crop rotations with pulses enhances system productivity. Sci. Rep. 2015;5:14625. doi: 10.1038/srep14625.
    1. Leterme P. Recommendations by health organizations for pulse consumption. Br. J. Nutr. 2002;88:S239–S242. doi: 10.1079/BJN2002712.
    1. Young V.R., Pellett P.L. Plant proteins in relation to human protein and amino acid nutrition. Am. J. Clin. Nutr. 1994;59:1203S–1212S. doi: 10.1093/ajcn/59.5.1203S.
    1. Mudryj A.N., Yu N., Aukema H.M. Nutritional and health benefits of pulses. Appl. Physiol. Nutr. Metab. 2014;39:1197–1204. doi: 10.1139/apnm-2013-0557.
    1. Anderson J.W., Major A.W. Pulses and lipaemia, short- and long-term effect: Potential in the prevention of cardiovascular disease. Br. J. Nutr. 2002;88(Suppl. 3):S263–S271. doi: 10.1079/BJN2002716.
    1. Bazzano L.A., Thompson A.M., Tees M.T., Nguyen C.H., Winham D.M. Non-soy legume consumption lowers cholesterol levels: A meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2011;21:94–103. doi: 10.1016/j.numecd.2009.08.012.
    1. Thompson H.J., McGinley J.N., Neil E.S., Brick M.A. Beneficial effects of common bean on adiposity and lipid metabolism. Nutrients. 2017;9 doi: 10.3390/nu9090998.
    1. Fechner A., Fenske K., Jahreis G. Effects of legume kernel fibres and citrus fibre on putative risk factors for colorectal cancer: A randomised, double-blind, crossover human intervention trial. Nutr. J. 2013;12:101. doi: 10.1186/1475-2891-12-101.
    1. Champ M.M. Non-nutrient bioactive substances of pulses. Br. J. Nutr. 2002;88 Suppl 3:S307–S319. doi: 10.1079/BJN2002721.
    1. Harland B.F., Morris E.R. Phytate—A Good or a Bad Food Component. Nutr. Res. 1995;15:733–754. doi: 10.1016/0271-5317(95)00040-P.
    1. Jenkins K.J., Atwal A.S. Effects of dietary saponins on fecal bile acids and neutral sterols, and availability of vitamins A and E in the chick. J. Nutr. Biochem. 1994;5:134–137. doi: 10.1016/0955-2863(94)90084-1.
    1. Johnson I.T., Gee J.M., Price K., Curl C., Fenwick G.R. Influence of saponins on gut permeability and active nutrient transport in vitro. J. Nutr. 1986;116:2270–2277. doi: 10.1093/jn/116.11.2270.
    1. Goncalves R., Mateus N., Pianet I., Laguerre M., de Freitas V. Mechanisms of tannin-induced trypsin inhibition: a molecular approach. Langmuir. 2011;27:13122–13129. doi: 10.1021/la202280c.
    1. Kato C.G., Goncalves G.A., Peralta R.A., Seixas F.A.V., de Sa-Nakanishi A.B., Bracht L., Comar J.F., Bracht A., Peralta R.M. Inhibition of alpha-amylases by condensed and hydrolysable tannins: Focus on kinetics and hypoglycemic actions. Enzyme Res. 2017;2017:5724902. doi: 10.1155/2017/5724902.
    1. Helsper J.P.F.G., Hoogendijk J.M., van Norel A., Burger-Meyer K. Antinutritional factors in faba beans (Vica faba L.) as affected by breeding toward the absence of condensed tannins. J. Agric. Food Chem. 1993;41:1058–1061. doi: 10.1021/jf00031a008.
    1. Lestienne I., Besancon P., Caporiccio B., Lullien-Pellerin V., Treche S. Iron and zinc in vitro availability in pearl millet flours (Pennisetum glaucum) with varying phytate, tannin, and fiber contents. J. Agric. Food Chem. 2005;53:3240–3247. doi: 10.1021/jf0480593.
    1. Aviles-Gaxiola S., Chuck-Hernandez C., Serna Saldivar S.O. Inactivation methods of trypsin inhibitor in legumes: A review. J. Food Sci. 2018;83:17–29. doi: 10.1111/1750-3841.13985.
    1. Sathe S.K., Salunke D.K., Cheryan M. Technology of removal of unwanted components of dry beans. Crit. Rev. Food Sci. Nutr. 1984;21:263–287. doi: 10.1080/10408398409527402.
    1. Nosworthy M.G., Medina G., Franczyk A.J., Neufeld J., Appah P., Utioh A., Frohlich P., House J.D. Effect of processing on the in vitro and in vivo protein quality of beans (Phaseolus vulgaris and Vicia Faba) Nutrients. 2018;10 doi: 10.3390/nu10060671.
    1. Bligh E.G., Dyer W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959;37:911–917. doi: 10.1139/y59-099.
    1. Gleize B., Steib M., Andre M., Reboul E. Simple and fast HPLC method for simultaneous determination of retinol, tocopherols, coenzyme Q(10) and carotenoids in complex samples. Food Chem. 2012;134:2560–2564. doi: 10.1016/j.foodchem.2012.04.043.
    1. Reboul E., Goncalves A., Comera C., Bott R., Nowicki M., Landrier J.F., Jourdheuil-Rahmani D., Dufour C., Collet X., Borel P. Vitamin D intestinal absorption is not a simple passive diffusion: Evidences for involvement of cholesterol transporters. Mol. Nutr. Food Res. 2011;55:691–702. doi: 10.1002/mnfr.201000553.
    1. Goncalves A., Margier M., Roi S., Collet X., Niot I., Goupy P., Caris-Veyrat C., Reboul E. Intestinal scavenger receptors are involved in vitamin K1 absorption. J. Biol. Chem. 2014;289:30743–30752. doi: 10.1074/jbc.M114.587659.
    1. Dost K., Tokul O. Determination of phytic acid in wheat and wheat products by reverse phase high performance liquid chromatography. Anal. Chim. Acta. 2006;558:22–27. doi: 10.1016/j.aca.2005.11.035.
    1. Cheok C.Y., Salman H.A.K., Sulaiman R. Extraction and quantification of saponins: A review. Food Res. Int. 2014;59:16–40. doi: 10.1016/j.foodres.2014.01.057.
    1. George S., Brat P., Alter P., Amiot M.J. Rapid determination of polyphenols and vitamin C in plant-derived products. J. Agric. Food Chem. 2005;53:1370–1373. doi: 10.1021/jf048396b.
    1. Lásztity R., Hidvegi M. Amino Acid Composition and Biological Value of Cereal Proteins (Proceedings of the International Association for Cereal Chemistry Symposium on Amino Acid Composition and Biological Value of Cereal Proteins) D. Reidel Publishing Compagny; Budapest, Hungaria: 1985.
    1. AFSSA . Apport en protéines: Consommation, qualité, besoins et recommandations. AFSSA; Maison Alfort, France: 2007.
    1. Martin-Cabrejas M.A., Aguilera Y., Pedrosa M.M., Cuadrado C., Hernandez T., Diaz S., Esteban R.M. The impact of dehydration process on antinutrients and protein digestibility of some legume flours. Food Chem. 2009;114:1063–1068. doi: 10.1016/j.foodchem.2008.10.070.
    1. Table de composition nutritionnelle des aliments Ciqual. [(accessed on 1 November 2018)];2017 Available online:
    1. Reboul E. Vitamin E bioavailability: Mechanisms of intestinal absorption in the spotlight. Antioxidants (Basel) 2017;6 doi: 10.3390/antiox6040095.
    1. Scripsema N.K., Hu D.N., Rosen R.B. Lutein, zeaxanthin, and meso-zeaxanthin in the clinical management of eye disease. J. Ophthalmol. 2015;2015:865179. doi: 10.1155/2015/865179.
    1. Cabrera C., Lloris F., Gimenez R., Olalla M., Lopez M.C. Mineral content in legumes and nuts: Contribution to the Spanish dietary intake. Sci. Total Environ. 2003;308:1–14. doi: 10.1016/S0048-9697(02)00611-3.
    1. Agnoli C., Baroni L., Bertini I., Ciappellano S., Fabbri A., Papa M., Pellegrini N., Sbarbati R., Scarino M.L., Siani V., et al. Position paper on vegetarian diets from the working group of the Italian Society of Human Nutrition. NMCD. 2017;27:1037–1052. doi: 10.1016/j.numecd.2017.10.020.
    1. Rechcígl M., editor. Handbook of Nutritive Value of Processed Food. CRC Press; Boca Raton, FL, USA: 1982. Effect of processing on nutritive value of food: canning (Fruit, juices, vegetables, meat, fish)
    1. Rickman J.C., Bruhn C.M., Barrett D.M. Nutritional comparison of fresh, frozen, and canned fruits and vegetables II. Vitamin A and carotenoids, vitamin E, minerals and fiber. J. Sci. Food Agric. 2007;87:1185–1196. doi: 10.1002/jsfa.2824.
    1. Perron N.R., Brumaghim J.L. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem. Biophys. 2009;53:75–100. doi: 10.1007/s12013-009-9043-x.
    1. Wang N., Hatcher D.W., Tyler R.T., Toews R., Gawalko E.J. Effect of cooking on the composition of beans (Phaseolus vulgaris L.) and chickpeas (Cicer arietinum L.) Food Res. Int. 2010;43:589–594. doi: 10.1016/j.foodres.2009.07.012.
    1. Vijayakumari K., Siddhuraju P., Pugalenthi M., Janardhanan K. Effect of soaking and heat processing on the levels of antinutrients and digestible proteins in seeds of Vigna aconitifolia and Vigna sinensis. Food Chem. 1998;63:259–264. doi: 10.1016/S0308-8146(97)00207-0.
    1. Aguilera Y., Estrella I., Benitez V., Esteban R.M., Martin-Cabrejas M.A. Bioactive phenolic compounds and functional properties of dehydrated bean flours. Food Res. Int. 2011;44:774–780. doi: 10.1016/j.foodres.2011.01.004.
    1. Rickman J.C., Barrett D.M., Bruhn C.M. Nutritional comparison of fresh, frozen and canned fruits and vegetables. Part 1. Vitamins C and B and phenolic compounds. J. Sci. Food Agric. 2007;87:930–944. doi: 10.1002/jsfa.2825.
    1. Livny O., Reifen R., Levy I., Madar Z., Faulks R., Southon S., Schwartz B. Beta-carotene bioavailability from differently processed carrot meals in human ileostomy volunteers. Eur. J. Nutr. 2003;42:338–345. doi: 10.1007/s00394-003-0430-6.
    1. Reboul E., Richelle M., Perrot E., Desmoulins-Malezet C., Pirisi V., Borel P. Bioaccessibility of carotenoids and vitamin E from their main dietary sources. J. Agric. Food Chem. 2006;54:8749–8755. doi: 10.1021/jf061818s.
    1. Palmer S.M., Winham D.M., Oberhauser A.M., Litchfield R.E. Socio-ecological barriers to dry grain pulse consumption among low-income women: A mixed methods approach. Nutrients. 2018;10 doi: 10.3390/nu10081108.
    1. Masset G., Soler L.G., Vieux F., Darmon N. Identifying sustainable foods: The relationship between environmental impact, nutritional quality, and prices of foods representative of the French diet. J. Acad. Nutr. Diet. 2014;114:862–869. doi: 10.1016/j.jand.2014.02.002.
    1. Jukanti A.K., Gaur P.M., Gowda C.L.L., Chibbar R.N. Nutritional quality and health benefits of chickpea (Cicer arietinum L.): A review. Br. J. Nutr. 2012;108:S11–S26. doi: 10.1017/S0007114512000797.

Source: PubMed

3
Subscribe