Shifts on Gut Microbiota Associated to Mediterranean Diet Adherence and Specific Dietary Intakes on General Adult Population

Izaskun Garcia-Mantrana, Marta Selma-Royo, Cristina Alcantara, María C Collado, Izaskun Garcia-Mantrana, Marta Selma-Royo, Cristina Alcantara, María C Collado

Abstract

There is increasing evidence for the interaction between gut microbiome, diet, and health. It is known that dysbiosis is related to disease and that most of the times this imbalances in gut microbial populations can be promoted through diet. Western dietary habits, which are characterized by high intakes of calories, animal proteins, saturated fats, and simple sugars have been linked with higher risk of obesity, diabetes, cancer, and cardiovascular disease. However, little is known about the impact of dietary patterns, dietary components, and nutrients on gut microbiota in healthy people. The aim of our study is to determine the effect of nutrient compounds as well as adherence to a dietary pattern, as the Mediterranean diet (MD) on the gut microbiome of healthy adults. Consequently, gut microbiota composition in healthy individuals, may be used as a potential biomarker to identify nutritional habits as well as risk of disease related to these habits. Dietary information from healthy volunteers (n = 27) was recorded using the Food Frequency Questionnaire. Adherence to the MD was measured using the PREDIMED test. Microbiota composition and diversity were obtained by 16S rRNA gene sequencing and specific quantitative polymerase chain reaction. Microbial metabolic activity was determined by quantification of short chain fatty acids (SCFA) on high performance liquid chromatography (HPLC). The results indicated that a higher ratio of Firmicutes-Bacteroidetes was related to lower adherence to the MD, and greater presence of Bacteroidetes was associated with lower animal protein intake. High consumption of animal protein, saturated fats, and sugars affected gut microbiota diversity. A significant higher presence of Christensenellaceae was found in normal-weight individuals compared to those who were overweight. This was also the case in volunteers with greater adherence to the MD compared to those with lower adherence. Butyricimonas, Desulfovibrio, and Oscillospira genera were associated with a BMI <25 and the genus Catenibacterium with a higher PREDIMED score. Higher bifidobacterial counts, and higher total SCFA were related to greater consumption of plant-based nutrients, such as vegetable proteins and polysaccharides. Better adherence to the MD was associated with significantly higher levels of total SCFA. Consequently, diet and specific dietary components could affect microbiota composition, diversity, and activity, which may have an effect on host metabolism by increasing the risk of Western diseases.

Keywords: diet patterns; feces; mediterranean diet; microbiota; nutrition.

Figures

FIGURE 1
FIGURE 1
Microbiota composition and SCFA profile according to specific nutrient intake. (A) Total SCFA levels measured by HPLC according to specific nutrient intake as vegetal protein, polysaccharides and dietary fiber; (B) Specific microbial levels measured with qPCR according to specific nutrient intakes as vegetal protein, polysaccharides and dietary fiber.
FIGURE 2
FIGURE 2
Microbiota composition by 16S rDNA sequencing. Microbial Relative abundances (%) at phylum (A: General profile, B: according to BMI, and C: according to MD adherence) and family level (D: General profile, E: according to BMI, and F: according to MD adherence) found in the gut microbiome of volunteers.
FIGURE 3
FIGURE 3
Linear Discriminant Analysis (LDA) Effect Size (LEfSe) plot of taxonomic biomarkers identified in the gut microbiome of volunteers. Specific bacterial traits found at family and genus levels according to BMI (A,B, respectively) and associated with the adherence to Mediterranean diet (C,D, respectively). The LEfSe algorithm, emphasizing both statistical and biological relevance, was used for biomarker discovery. The threshold for the logarithmic discriminant analysis (LDA) score was 3.
FIGURE 4
FIGURE 4
Microbiota profile and SCFA profile according to specific nutrient intake. (A) Significantly different taxa at phylum level related to nutrient intake. (B) Bacterial diversity and richness at OTUs level according to nutrient intake.

References

    1. AlEssa H. B., Malik V. S., Yuan C., Willett W. C., Huang T., Hu F. B., et al. (2017). Dietary patterns and cardiometabolic and endocrine plasma biomarkers in US women. 105 432–441. 10.3945/ajcn.116.143016
    1. Andoh A., Nishida A., Takahashi K., Inatomi O., Imaeda H., Bamba S., et al. (2016). Comparison of the gut microbial community between obese and lean peoples using 16S gene sequencing in a Japanese population. 59 65–70. 10.3164/jcbn.15-152
    1. Bajzer M., Seeley R. J. (2006). Physiology: obesity and gut flora. 444 1009–1010. 10.1038/4441009a
    1. Biro F. M., Wien M. (2010). Childhood obesity and adult morbidities. 91 1499S–1505S. 10.3945/ajcn.2010.28701B
    1. Cani P. D., Possemiers S., Van de Wiele T., Guiot Y., Everard A., Rottier O., et al. (2009). Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. 58 1091–1103. 10.1136/gut.2008.165886
    1. Caporaso J. G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F. D., Costello E. K., et al. (2010). QIIME allows analysis of high-throughput community sequencing data. 7 335–336. 10.1038/nmeth.f.303
    1. Chierico F., Del Vernocchi P., Dallapiccola B., Putignani L. (2014). Mediterranean diet and health: food effects on Gut microbiota and disease control. 15 11678–11699. 10.3390/ijms150711678
    1. Clarke S. F., Murphy E. F., Nilaweera K., Ross P. R., Shanahan F., O’Toole P. W., et al. (2012). The gut microbiota and its relationship to diet and obesity. 3 186–202. 10.4161/gmic.20168
    1. Collado M. C., Isolauri E., Laitinen K., Salminen S. (2008). Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. 88 894–899. 10.1093/ajcn/88.4.894
    1. De Filippis F., Pellegrini N., Vannini L., Jeffery I. B., La Storia A., Laghi L., et al. (2016). High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. 65 1812–1821. 10.1136/gutjnl-2015-309957
    1. De Filippo C., Cavalieri D., Di Paola M., Ramazzotti M., Poullet J. B., Massart S., et al. (2010). Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. 107 14691–14696. 10.1073/pnas.1005963107
    1. Dominguez-Bello M. G., Costello E. K., Contreras M., Magris M., Hidalgo G., Fierer N., et al. (2010). Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. 107 11971–11975. 10.1073/pnas.1002601107
    1. Dontas A. S., Zerefos N. S., Panagiotakos D. B., Vlachou C., Valis D. A. (2007). Mediterranean diet and prevention of coronary heart disease in the elderly. 2 109–115. 10.2147/ciia.2007.2.1.109
    1. Escobar J. S., Klotz B., Valdes B. E., Agudelo G. M., Whon T., Lee M., et al. (2014). The gut microbiota of Colombians differs from that of Americans, Europeans and Asians. 14:311. 10.1186/s12866-014-0311-6
    1. Fernández-Ballart J. D., Piñol J. L., Zazpe I., Corella D., Carrasco P., Toledo E., et al. (2010). Relative validity of a semi-quantitative food-frequency questionnaire in an elderly Mediterranean population of Spain. 103 1808–1816. 10.1017/S0007114509993837
    1. Goodrich J. K., Waters J. L., Poole A. C., Sutter J. L., Koren O., Blekhman R., et al. (2014). Human genetics shape the Gut microbiome. 159 789–799. 10.1016/j.cell.2014.09.053
    1. Graf D., Di Cagno R., Fåk F., Flint H. J., Nyman M., Saarela M., et al. (2015). Contribution of diet to the composition of the human gut microbiota. 26:26164. 10.3402/mehd.v26.26164
    1. Gutiérrez-Díaz I., Fernández-Navarro T., Salazar N., Bartolomé B., Moreno-Arribas M. V., de Andres-Galiana E. J., et al. (2017). Adherence to a Mediterranean diet influences the fecal metabolic profile of microbial-derived phenolics in a Spanish cohort of middle-age and older people. 65 586–595. 10.1021/acs.jafc.6b04408
    1. Gutiérrez-Díaz I., Fernández-Navarro T., Sánchez B., Margolles A., González S. (2016). Mediterranean diet and faecal microbiota: a transversal study. 7 2347–2356. 10.1039/c6fo00105j
    1. Heiman M. L., Greenway F. L. (2016). A healthy gastrointestinal microbiome is dependent on dietary diversity. 5 317–320. 10.1016/j.molmet.2016.02.005
    1. Huda-Faujan N., Abdulamir A. S., Fatimah A. B., Anas O. M., Shuhaimi M., Yazid A. M., et al. (2010). The impact of the level of the intestinal short chain Fatty acids in inflammatory bowel disease patients versus healthy subjects. 4 53–58. 10.2174/1874091X01004010053
    1. Jain A., Gupta Y., Jain S. K. (2007). Perspectives of biodegradable natural polysaccharides for site-specific drug delivery to the colon. 10 86–128.
    1. Jew S., AbuMweis S. S., Jones P. J. (2009). Evolution of the human diet: linking our ancestral diet to modern functional foods as a means of chronic disease prevention. 12 925–934. 10.1089/jmf.2008.0268
    1. Karlsson C. L., Önnerfält J., Xu J., Molin G., Ahrné S., Thorngren-Jerneck K. (2012). The microbiota of the gut in preschool children with normal and excessive body weight. 20 2257–2261. 10.1038/oby.2012.110
    1. Kim C. H., Park J., Kim M. (2014). Gut microbiota-derived short-chain Fatty acids, T cells, and inflammation. 14 277–288. 10.4110/in.2014.14.6.277
    1. Konikoff T., Gophna U. (2016). Oscillospira: a central, enigmatic component of the human Gut microbiota. 24 523–524. 10.1016/j.tim.2016.02.015
    1. Larsen N., Vogensen F. K., van den Berg F. W., Nielsen D. S., Andreasen A. S., Pedersen B. K., et al. (2010). Gut microbiota in human adults with Type 2 diabetes differs from non-diabetic adults. 5:e9085. 10.1371/journal.pone.0009085
    1. Le Chatelier E., Nielsen T., Qin J., Prifti E., Hildebrand F., Falony G., et al. (2013). Richness of human gut microbiome correlates with metabolic markers. 500 541–546. 10.1038/nature12506
    1. Ley R. E., Turnbaugh P. J., Klein S., Gordon J. I. (2006). Microbial ecology: human gut microbes associated with obesity. 444 1022–1023. 10.1038/4441022a
    1. Lockyer S., Nugent A. P. (2017). Health effects of resistant starch. 42 10–41. 10.1111/nbu.12244
    1. Lopez-Legarrea P., Fuller N. R., Zulet M. A., Martinez J. A., Caterson I. D. (2014). The influence of Mediterranean, carbohydrate and high protein diets on gut microbiota composition in the treatment of obesity and associated inflammatory state. 23 360–368. 10.6133/apjcn.2014.23.3.16
    1. Man S. M., Kaakoush N. O., Mitchell H. M. (2011). The role of bacteria and pattern-recognition receptors in Crohn’s disease. 8 152–168. 10.1038/nrgastro.2011.3
    1. Martinez-Gonzalez M. A., Corella D., Salas-Salvado J., Ros E., Covas M. I., Fiol M., et al. (2012). Cohort profile: design and methods of the PREDIMED study. 41 377–385. 10.1093/ije/dyq250
    1. Meddah A. T., Yazourh A., Desmet I., Risbourg B., Verstraete W., Romond M. B. (2001). The regulatory effects of whey retentate from bifidobacteria fermented milk on the microbiota of the simulator of the human intestinal microbial ecosystem (SHIME). 91 1110–1117. 10.1046/j.1365-2672.2001.01482.x
    1. Mendez M. A., Popkin B. M., Jakszyn P., Berenguer A., Tormo M. J., Sanchéz M. J., et al. (2006). Adherence to a Mediterranean diet is associated with reduced 3-year incidence of obesity. 136 2934–2938. 10.1093/jn/136.11.2934
    1. Minihane A. M., Vinoy S., Russell W. R., Baka A., Roche H. M., Tuohy K. M., et al. (2015). Low-grade inflammation, diet composition and health: current research evidence and its translation. 114 999–1012. 10.1017/S0007114515002093
    1. Mira-Pascual L., Cabrera-Rubio R., Ocon S., Costales P., Parra A., Suarez A., et al. (2015). Microbial mucosal colonic shifts associated with the development of colorectal cancer reveal the presence of different bacterial and archaeal biomarkers. 50 167–179. 10.1007/s00535-014-0963-x
    1. Moens F., Verce M., De Vuyst L. (2017). Lactate- and acetate-based cross-feeding interactions between selected strains of lactobacilli, bifidobacteria and colon bacteria in the presence of inulin-type fructans. 241 225–236. 10.1016/j.ijfoodmicro.2016.10.019
    1. Monda V., Villano I., Messina A., Valenzano A., Esposito T., Moscatelli F., et al. (2017). Exercise modifies the Gut microbiota with positive health effects. 2017:3831972. 10.1155/2017/3831972
    1. Myles I. A. (2014). Fast food fever: reviewing the impacts of the Western diet on immunity. 13 1–17. 10.1186/1475-2891-13-61
    1. Newby P. K., Muller D., Hallfrisch J., Andres R., Tucker K. L. (2004). Food patterns measured by factor analysis and anthropometric changes in adults. 80 504–513. 10.1093/ajcn/80.2.504
    1. Ogce F., Ceber E., Ekti R., Oran N. T. (2008). Comparison of Mediterranean, Western and Japanese diets and some recommendations. 9 351–356.
    1. O’Keefe S. J., Li J. V., Lahti L., Ou J., Carbonero F., Mohammed K., et al. (2015). Fat, fibre and cancer risk in African Americans and rural Africans. 6:6342. 10.1038/ncomms7342
    1. Papa E., Docktor M., Smillie C., Weber S., Preheim S. P., Gevers D., et al. (2012). Non-Invasive mapping of the gastrointestinal microbiota identifies children with inflammatory bowel disease. 7:e39242. 10.1371/journal.pone.0039242
    1. Penders J., Thijs C., Vink C., Stelma F. F., Snijders B., Kummeling I., et al. (2006). Factors influencing the composition of the intestinal microbiota in early infancy. 118 511–521. 10.1542/peds.2005-2824
    1. Rajilić-Stojanović M., de Vos W. M. (2014). The first 1000 cultured species of the human gastrointestinal microbiota. 38 996–1047. 10.1111/1574-6976.12075
    1. Rivière A., Selak M., Lantin D., Leroy F., De Vuyst L. (2016). Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human Gut. 7:979. 10.3389/fmicb.2016.00979
    1. Rodríguez J. M., Murphy K., Stanton C., Ross R. P., Kober O. I., Juge N., et al. (2015). The composition of the gut microbiota throughout life, with an emphasis on early life. 26:26050. 10.3402/mehd.v26.26050
    1. Rodríguez-Díaz J., García-Mantrana I., Vila-Vicent S., Gozalbo-Rovira R., Buesa J., Monedero V., et al. (2017). Relevance of secretor status genotype and microbiota composition in susceptibility to rotavirus and norovirus infections in humans. 7:45559. 10.1038/srep45559
    1. Salas-Salvadó J., Rubio M. A., Barbany M., de la seedo G. C., Moreno Esteban B. (2007). Consenso SEEDO 2007 para la evaluación del sobrepeso y la obesidad y el establecimiento de criterios de intervención terapéutica. Conferencia de consenso. 128 184–196. 10.1016/S0025-7753(07)72531-9
    1. Sarmiento-Rubiano L. A., Zúñiga M., Pérez-Martínez G., Yebra M. J. (2007). Dietary supplementation with sorbitol results in selective enrichment of lactobacilli in rat intestine. 158 694–701. 10.1016/j.resmic.2007.07.007
    1. Schulz M., Nöthlings U., Hoffmann K., Bergmann M. M., Boeing H. (2005). Identification of a food pattern characterized by high-fiber and low-fat food choices associated with low prospective weight change in the EPIC-Potsdam cohort. 135 1183–1189. 10.1093/jn/135.5.1183
    1. Segata N. (2015). Gut microbiome: westernization and the disappearance of intestinal diversity. 25 R611–R613. 10.1016/j.cub.2015.05.040
    1. Segata N., Izard J., Waldron L., Gevers D., Miropolsky L., Garrett W. S., et al. (2011). Metagenomic biomarker discovery and explanation. 12:R60. 10.1186/gb-2011-12-6-r60
    1. Serra Majem L., Aranceta Bartrina J., Aranceta Bartrina J. (2006). Amsterdam: Masson.
    1. Shankar V., Gouda M., Moncivaiz J., Gordon A., Reo N. V., Hussein L., et al. (2017). Differences in Gut metabolites and microbial composition and functions between Egyptian and U.S. children are consistent with their diets. 2:e00169–16. 10.1128/mSystems.00169-16
    1. Shin J.-H., Sim M., Lee J.-Y., Shin D.-M. (2016). Lifestyle and geographic insights into the distinct gut microbiota in elderly women from two different geographic locations. 35:31. 10.1186/s40101-016-0121-7
    1. Singh R. K., Chang H.-W., Yan D., Lee K. M., Ucmak D., Wong K., et al. (2017). Influence of diet on the gut microbiome and implications for human health. 15:73. 10.1186/s12967-017-1175-y
    1. Sofi F., Macchi C., Abbate R., Gensini G. F., Casini A. (2013). Mediterranean diet and health. 39 335–342. 10.1002/biof.1096
    1. Sonnenburg E. D., Smits S. A., Tikhonov M., Higginbottom S. K., Wingreen N. S., Sonnenburg J. L. (2016). Diet-induced extinctions in the gut microbiota compound over generations. 529 212–215. 10.1038/nature16504
    1. Sonnenburg E. D., Sonnenburg J. L. (2014). Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. 20 779–786. 10.1016/j.cmet.2014.07.003
    1. Tims S., Derom C., Jonkers D. M., Vlietinck R., Saris W. H., Kleerebezem M., et al. (2013). Microbiota conservation and BMI signatures in adult monozygotic twins. 7 707–717. 10.1038/ismej.2012.146
    1. Turnbaugh P. J., Ley R. E., Mahowald M. A., Magrini V., Mardis E. R., Gordon J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. 444 1027–1031. 10.1038/nature05414
    1. Verdam F. J., Fuentes S., de Jonge C., Zoetendal E. G., Erbil R., Greve J. W., et al. (2013). Human intestinal microbiota composition is associated with local and systemic inflammation in obesity. 21 E607–E615. 10.1002/oby.20466
    1. Walker A. W., Ince J., Duncan S. H., Webster L. M., Holtrop G., Ze X., et al. (2011). Dominant and diet-responsive groups of bacteria within the human colonic microbiota. 5 220–230. 10.1038/ismej.2010.118
    1. Walters W. A., Xu Z., Knight R. (2014). Meta-analyses of human gut microbes associated with obesity and IBD. 588 4223–4233. 10.1016/j.febslet.2014.09.039
    1. Wu G. D., Chen J., Hoffmann C., Bittinger K., Chen Y.-Y., Keilbaugh S. A., et al. (2011). Linking long-term dietary patterns with gut microbial enterotypes. 334 105–108. 10.1126/science.1208344
    1. Yatsunenko T., Rey F. E., Manary M. J., Trehan I., Dominguez-Bello M. G., Contreras M., et al. (2012). Human gut microbiome viewed across age and geography. 486 222–227. 10.1038/nature11053
    1. Zeng H., Ishaq S. L., Zhao F.-Q., Wright A.-D. (2016). Colonic inflammation accompanies an increase of β-catenin signaling and Lachnospiraceae / Streptococcaceae bacteria in the hind gut of high-fat diet-fed mice. 35 30–36. 10.1016/j.jnutbio.2016.05.015

Source: PubMed

3
Subscribe